【題目】如圖,幾何體中, 平面, 是正方形, 為直角梯形, , , 的腰長為的等腰直角三角形.

(Ⅰ)求證: ;

(Ⅱ)求二面角的大。

【答案】(I)證明過程見解析;(Ⅱ)二面角的大小為.

【解析】試題分析:(Ⅰ)證明,然后證明平面,推出平面,利用直線與平面垂直的性質(zhì)定理證明;(Ⅱ)建立空間立體直角坐標系,分別求出平面和平面的法向量,求出法向量之間的夾角即可求出二面角的大小.

試題解析:

(I)證明:因為是腰長為的等腰直角三角形,所以.

因為平面,所以.

,所以.

,所以平面.

所以.

(Ⅱ)解:以點為原點, 分別為軸建立如下圖

所示的空間直角坐標系:

因為是腰長為的等腰直角三角形,

所以 .

所以,

.

所以.

則點.

.

設(shè)平面的法向量為,則

,得是平面的一個法向量;

易知平面的一個法向量;

設(shè)二面角的大小為,則

,解得.

故二面角的大小為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,該幾何體是由一個直三棱柱和一個正四棱錐組合而成,,.

(1)證明:平面平面;

(2)求正四棱錐的高,使得該四棱錐的體積是三棱錐體積的4倍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在以為頂點的多面體中, 平面, 平面,

1)請在圖中作出平面,使得,且,并說明理由;

2)求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)(x∈R)滿足f(1)=1,且f(x)的導函數(shù)f′(x)≥ ,則f(x)< + 的解集為(
A.{x|x<1}
B.{x|x>1}
C.{x|x<﹣1}
D.{x|x>﹣1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)是定義在R上的奇函數(shù),當x>0時,f′(x)sinx+f(x)cosx>0且f( )=1,則f(x)sinx≤1的整數(shù)解的集合為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求曲線在點處的切線方程;

(Ⅱ)若, 恒成立,求實數(shù)的取值范圍;

(Ⅲ)當時,討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司有一批專業(yè)技術(shù)人員,對他們進行年齡狀況和接受教育程度(學歷)的調(diào)查,其結(jié)果(人數(shù)分布)如表:

學歷

35歲以下

35~50歲

50歲以上

本科

80

30

20

研究生

x

20

y

(Ⅰ)用分層抽樣的方法在35~50歲年齡段的專業(yè)技術(shù)人員中抽取一個容量為10的樣本,將該樣本看成一個總體,從中任取3人,求至少有1人的學歷為研究生的概率;
(Ⅱ)在這個公司的專業(yè)技術(shù)人員中按年齡狀況用分層抽樣的方法抽取N個人,其中35歲以下48人,50歲以上10人,再從這N個人中隨機抽取出1人,此人的年齡為50歲以上的概率為 ,求x、y的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,角A,B,C所對的邊分別是a,b,c,且.

1)證明:sinAsinB=sinC;

2)若,求tanB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2﹣3x,則函數(shù)g(x)=f(x)﹣x+3的零點的集合為(
A.{1,3}
B.{﹣3,﹣1,1,3}
C.{2﹣ ,1,3}
D.{﹣2﹣ ,1,3}

查看答案和解析>>

同步練習冊答案