【題目】已知函數(shù)

(Ⅰ)若,求曲線在點(diǎn)處的切線方程;

(Ⅱ)若 恒成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)當(dāng)時,討論函數(shù)的單調(diào)性.

【答案】I;(II;(III)詳見解析.

【解析】試題分析:(Ⅰ)求出當(dāng)的函數(shù)的導(dǎo)數(shù),求得切線的斜率和切點(diǎn),由點(diǎn)斜式方程,即可得到所求切線方程;(Ⅱ)對進(jìn)行變形,得恒成立,再構(gòu)造),再對進(jìn)行求導(dǎo),即可求出,即可得到實(shí)數(shù)的取值范圍;(Ⅲ)求出函數(shù)的導(dǎo)數(shù),求出的零點(diǎn),分別對兩個零點(diǎn)的大小關(guān)系作為分類討論,即可得到函數(shù)的單調(diào)性.

試題解析:

解:(Ⅰ)當(dāng)時, ,∴切線的斜率

, 在點(diǎn)處的切線方程為,

(Ⅱ)∵對 恒成立,∴恒成立,

),,

當(dāng)時, ,當(dāng)時, ,

上單調(diào)遞減,在上單調(diào)遞增,

,故實(shí)數(shù)的取值范圍為

(Ⅲ)

,得

①當(dāng)時, 恒成立,∴上單調(diào)遞增;

②當(dāng)時, ,

,得;由,得

單調(diào)遞增區(qū)間為 ;單調(diào)減區(qū)間為

③當(dāng)時,

,得;由,得

單調(diào)增區(qū)間為, ,單調(diào)減區(qū)間為

綜上所述:當(dāng)時, 上單調(diào)遞增;

當(dāng)時, 單調(diào)增區(qū)間為, ,單調(diào)減區(qū)間為;

當(dāng)時, 單調(diào)增區(qū)間為, ,單調(diào)減區(qū)間為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)4cosωx·sin(ωx)(ω>0)的最小正周期為π

(1)ω的值;

(2)討論f(x)在區(qū)間[0,]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)f(x)= ,有下列5個結(jié)論: ①任取x1 , x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2;
②函數(shù)y=f(x)在區(qū)間[4,5]上單調(diào)遞增;
③f(x)=2kf(x+2k)(k∈N+),對一切x∈[0,+∞)恒成立;
④函數(shù)y=f(x)﹣ln(x﹣1)有3個零點(diǎn);
⑤若關(guān)于x的方程f(x)=m(m<0)有且只有兩個不同實(shí)根x1 , x2 , 則x1+x2=3.
則其中所有正確結(jié)論的序號是 . (請寫出全部正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),對任意的x∈R都有3f′(x)>f(x)成立,則(
A.3f(3ln2)>2f(3ln3)
B.3f(3ln2)與2f(3ln3)的大小不確定
C.3f(3ln2)=2f(3ln3)
D.3f(3ln2)<2f(3ln3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,幾何體中, 平面, 是正方形, 為直角梯形, , 的腰長為的等腰直角三角形.

(Ⅰ)求證: ;

(Ⅱ)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個說法: ①若向量{ 、 、 }是空間的一個基底,則{ + 、 }也是空間的一個基底.
②空間的任意兩個向量都是共面向量.
③若兩條不同直線l,m的方向向量分別是 ,則l∥m
④若兩個不同平面α,β的法向量分別是 、 ,且 =(1,2,﹣2)、 =(﹣2,﹣4,4),則α∥β.
其中正確的說法的個數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(πx+ )和函數(shù)g(x)=cos(πx+ )在區(qū)間[﹣ , ]上的圖象交于A,B,C三點(diǎn),則△ABC的面積是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,內(nèi)角A,B,C的對邊分別是a,b,c,且a2+b2ab=c2.

(1)求C;

(2)設(shè)cos Acos B=,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥面ABCD,AD∥BC,AD⊥CD,且AD=CD=2 ,BC=4 ,PA=2,點(diǎn)M在PD上.

(1)求證:AB⊥PC
(2)若二面角M﹣AC﹣D的大小為45°,求 的值.

查看答案和解析>>

同步練習(xí)冊答案