如圖,四棱錐的底面為一直角梯形,其中,底面的中點.
(1)求證://平面;
(2)若平面,
①求異面直線所成角的余弦值;
②求二面角的余弦值.
解:設,建立如圖的空間坐標系,,,
.
(1),,所以,  
平面,平面.              
(2)平面,,即
,,即.
,,
所以異面直線所成角的余弦值為;               
②平面和平面中,,
所以平面的一個法向量為;平面的一個法向量為
,所以二面角的余弦值為.      
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在三棱柱ADF—BCE中,側棱底面,底面是等腰直角三角形,且M、G分別是AB、DF的中點.

(1)求證GA∥平面FMC;
(2)求直線DM與平面ABEF所成角。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)如圖一,平面四邊形關于直線對稱,.把沿折起(如圖二),使二面角的余弦值等于.對于圖二,
(Ⅰ)求;
(Ⅱ)證明:平面;
(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,在多面體ABCDEF中,四邊形ABCD是矩形,AB∥EF,∠EAB=90º,AB=2,AD=AE=EF=1,平面ABFE⊥平面ABCD。
(1)求直線FD與平面ABCD所成的角;
(2)求點D到平面BCF的距離;
(3)求二面角B—FC—D的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,直三棱柱中, AB=1,,∠ABC=60.
(1)證明:;
(2)求二面角AB的余弦值。 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,正方形的邊長為1,正方形所在平面與平面互相垂直,
的中點.
(1)求證:平面;

(2)求證:;
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題12 分)如圖,在四棱錐P-ABCD中,側面PAD是正三角形,且與底面ABCD垂直,底面ABCD為正方形,E、F分別為AB、PC的中點.
①求證:EF⊥平面PCD;
②求平面PCB與平面PCD的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖所示,四棱錐中,底面為正方形,平面,,,分別為的中點.

(1)求證:;;
(2)求三棱錐的體積.                       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知棱長為4的正方體中,為側面的中心,為棱的中點,試計算
(1)
(2)求證
(3)求與面所成角的余弦值.

查看答案和解析>>

同步練習冊答案