已知函數(shù)f(x)=x2-2ax+a2+1,x∈[0,1],若g(a)為f(x)最小值.
(1)求g(a);
(2)當(dāng)g(a)=5時(shí),求a的值.
考點(diǎn):二次函數(shù)的性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由條件利用二次函數(shù)的性質(zhì),分對(duì)稱(chēng)軸在區(qū)間[0,1]的左側(cè)、中間、由側(cè)三種情況,分別求得函數(shù)的最小值.
(2)分當(dāng)a<0時(shí)、當(dāng)a>1時(shí)兩種情況,分別根據(jù)g(a)的解析式以及g(a)=5,求得a的值.
解答: 解:(1)由于函數(shù)f(x)=x2-2ax+a2+1=(x-a)2+1,x∈[0,1],
故當(dāng)a<0時(shí),f(x)的最小值g(a)=f(0)=a2+1;
當(dāng)0≤a≤1時(shí),f(x)的最小值g(a)=f(a)=1;
當(dāng)a>1時(shí),f(x)的最小值g(a)=f(1)=a2-2a+2.
綜上可得,g(a)=
a2+1,a<0
1,0≤a≤1
a2-2a+2,a>1

(2)當(dāng)a<0時(shí),由g(a)=5=a2+1,求得a=-2.
當(dāng)a>1時(shí),由a2-2a+2=5,求得a=3.
綜上可得,a=-2,或 a=3.
點(diǎn)評(píng):本題主要考查求二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,體現(xiàn)了分類(lèi)討論的數(shù)學(xué)思想,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC 中,已知邊c=10,A=45°,C=30°,求△ABC的邊a?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線(xiàn)C的極坐標(biāo)方程是p=2sinθ,直線(xiàn)l的參數(shù)方程是
x=-
3
5
t+2
y=
4
5
t
(t為參數(shù)),設(shè)直線(xiàn)與x軸的交點(diǎn)是M,N是曲線(xiàn)C上一動(dòng)點(diǎn),
(1)求曲線(xiàn)C與直線(xiàn)的普通方程;
(2)求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga(1-x),g(x)=loga(1+x),其中a>0,且a≠1.
(1)判斷f(x)+g(x)的奇偶性,并證明;
(2)判斷f(x)-g(x)的單調(diào)性,并證明;
(3)設(shè)命題p:f(x)-g(x)為減函數(shù),命題q:x2+ax+2<0有解.若p或q為真,p且q為假,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)已知圓C:x2+y2=1和點(diǎn)Q(2,0),動(dòng)點(diǎn)M到圓C的切線(xiàn)長(zhǎng)與|MQ|的比等于常數(shù)λ(λ>0),求動(dòng)點(diǎn)M的軌跡方程,并說(shuō)明它表示什么曲線(xiàn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)為奇函數(shù),且當(dāng)x>0時(shí),f(x)=2x-1,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=asinωx+bcosωx(ω>0)的周期T=π,最大值f(
π
12
)=4.
(1)求ω,a,b的值;
(2)若α,β為方程f(x)=0的兩根,α,β終邊不共線(xiàn),求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(m-1)x2+(-m+2)x-1>0,其中0<m<2
(1)解關(guān)于x的不等式;
(2)若x>1時(shí),不等式恒成立,求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,∠B=90°,SA⊥面ABC,AM⊥SC,AN⊥SB垂足分別為N、M,求證:AN⊥BC,MN⊥SC.

查看答案和解析>>

同步練習(xí)冊(cè)答案