【題目】噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴(yán)重問(wèn)題,為了了解聲音強(qiáng)度(單位:分貝)與聲音能量(單位:)之間的關(guān)系,將測(cè)量得到的聲音強(qiáng)度和聲音能量(,2,…,10)數(shù)據(jù)作了初步處理,得到如圖散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
表中,.
(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)適宜作為聲音強(qiáng)度關(guān)于聲音能量的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)
(2)根據(jù)表中數(shù)據(jù),求聲音強(qiáng)度關(guān)于聲音能量的回歸方程;
(3)當(dāng)聲音強(qiáng)度大于60分貝時(shí)屬于噪音,會(huì)產(chǎn)生噪音污染,城市中某點(diǎn)共受到兩個(gè)聲源的影響,這兩個(gè)聲源的聲音能量分別是和,且.已知點(diǎn)的聲音能量等于聲音能量與之和.請(qǐng)根據(jù)(1)中的回歸方程,判斷點(diǎn)是否受到噪音污染的干擾,并說(shuō)明理由.
附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:
,.
【答案】(1)見解析;(2);(3)見解析.
【解析】分析:(1)根據(jù)散點(diǎn)圖,可知(2)利用回歸系數(shù)公式先求出D關(guān)于w的回歸方程,再轉(zhuǎn)化為D關(guān)于I的回歸方程;
(3)利用對(duì)數(shù)的運(yùn)算性質(zhì)和基本不等式求出I的最小值,計(jì)算的最小值,從而作出判斷.
詳解:(1)更適合.
(2)令,先建立關(guān)于的線性回歸方程,
由于,
∴,
∴關(guān)于的線性回歸方程是,即關(guān)于的回歸方程是.
(2)點(diǎn)的聲音能量,∵,
∴ ,
根據(jù)(1)中的回歸方程,點(diǎn)的聲音強(qiáng)度的預(yù)報(bào)值
,
∴點(diǎn)會(huì)受到噪聲污染的干擾.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的,縱坐標(biāo)不變,再向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則下列說(shuō)法正確的是( )
A. 函數(shù)的一條對(duì)稱軸是
B. 函數(shù)的一個(gè)對(duì)稱中心是
C. 函數(shù)的一條對(duì)稱軸是
D. 函數(shù)的一個(gè)對(duì)稱中心是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是一幅統(tǒng)計(jì)圖,根據(jù)此圖得到的以下說(shuō)法中正確的是( )
A.這幾年生活水平逐年得到提高
B.生活費(fèi)收入指數(shù)增長(zhǎng)最快的一年是2015年
C.生活價(jià)格指數(shù)上漲速度最快的一年是2016年
D.雖然2017年的生活費(fèi)收入增長(zhǎng)緩慢,但生活價(jià)格指數(shù)略有降低,因而生活水平有較大的改善
E.2016年生活價(jià)格指數(shù)上漲的速度與2017年生活價(jià)格指數(shù)下降的速度相同
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠推出品牌為“玉兔”的新產(chǎn)品,生產(chǎn)“玉兔”的固定成本為20000元,每生產(chǎn)一件“玉兔”需要增加投入100元,根據(jù)統(tǒng)計(jì)數(shù)據(jù),總收益P(單位:元)與月產(chǎn)量x(單位:件)滿足(注:總收益=總成本+利潤(rùn))
(1)請(qǐng)將利潤(rùn)y(單位:元)表示成關(guān)于月產(chǎn)量x(單位:件)的函數(shù);
(2)當(dāng)月產(chǎn)量為多少時(shí),利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表表示的是某款車的車速與剎車距離的關(guān)系,試分別就,,三種函數(shù)關(guān)系建立數(shù)學(xué)模型,并探討最佳模擬,根據(jù)最佳模擬求車速為120km/h時(shí)的剎車距離.
車速/(km/h) | 10 | 15 | 30 | 40 | 50 |
剎車距離/m | 4 | 7 | 12 | 18 | 25 |
車速/((km/h) | 60 | 70 | 80 | 90 | 100 |
剎車距離/m | 34 | 43 | 54 | 66 | 80 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)若不等式對(duì)于任意成立,求正實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接2022年北京冬奧會(huì),推廣滑雪運(yùn)動(dòng),某滑雪場(chǎng)開展滑雪促銷活動(dòng).該滑雪場(chǎng)的收費(fèi)標(biāo)準(zhǔn)是:滑雪時(shí)間不超過(guò)1小時(shí)免費(fèi),超過(guò)1小時(shí)的部分每小時(shí)收費(fèi)標(biāo)準(zhǔn)為40元(不足1小時(shí)的部分按1小時(shí)計(jì)算).有甲、乙兩人相互獨(dú)立地來(lái)該滑雪場(chǎng)運(yùn)動(dòng),設(shè)甲、乙不超過(guò)1小時(shí)離開的概率分別為,;1小時(shí)以上且不超過(guò)2小時(shí)離開的概率分別為,;兩人滑雪時(shí)間都不會(huì)超過(guò)3小時(shí).
(1)求甲、乙兩人所付滑雪費(fèi)用相同的概率;
(2)設(shè)甲、乙兩人所付的滑雪費(fèi)用之和為隨機(jī)變量ξ,求ξ的分布列與數(shù)學(xué)期望E(ξ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)于回歸分析與獨(dú)立性檢驗(yàn)的說(shuō)法正確的是()
A.回歸分析和獨(dú)立性檢驗(yàn)沒(méi)有什么區(qū)別;
B.回歸分析是對(duì)兩個(gè)變量準(zhǔn)確關(guān)系的分析,而獨(dú)立性檢驗(yàn)是分析兩個(gè)變量之間的不確定性關(guān)系;
C.獨(dú)立性檢驗(yàn)可以確定兩個(gè)變量之間是否具有某種關(guān)系.
D.回歸分析研究?jī)蓚(gè)變量之間的相關(guān)關(guān)系,獨(dú)立性檢驗(yàn)是對(duì)兩個(gè)變量是否具有某種關(guān)系的一種檢驗(yàn);
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域是(0,+∞),且對(duì)任意正實(shí)數(shù)x,y都有f(xy)=f(x)+f(y)恒成立,已知f(2)=1,且x>1時(shí),f(x)>0.
(1)求f()的值;
(2)判斷y=f(x)在(0,+∞)上的單調(diào)性并給出證明;
(3)解不等式f(2x)>f(8x-6)-1.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com