9.如圖所示,點(diǎn)F1(-1,0),F(xiàn)2(1,0),動(dòng)點(diǎn)M到點(diǎn)F2的距離是$2\sqrt{2}$,線段MF1的中垂線交MF2于點(diǎn)P.
(Ⅰ)當(dāng)點(diǎn)M變化時(shí),求動(dòng)點(diǎn)P的軌跡G的方程;
(Ⅱ)設(shè)直線l:y=kx+m與軌跡G交于M、N兩點(diǎn),直線F2M與F2N的傾斜角分別為α、β,且α+β=π,求證:直線l經(jīng)過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo).

分析 (Ⅰ)連接PF1,運(yùn)用垂直平分線定理和橢圓的定義,可得P的軌跡為橢圓,方程為$\frac{x^2}{2}+{y^2}=1$;
(Ⅱ)聯(lián)立直線方程和橢圓方程,消去y,得(1+2k2)x2+4kmx+2m2-2=0,運(yùn)用韋達(dá)定理和直線的斜率公式,化簡(jiǎn)整理,再由直線恒過(guò)定點(diǎn)的方法,即可得到所求定點(diǎn).

解答 解:(Ⅰ)連接PF1,由$|M{F_2}|=2\sqrt{2}$,
∴$|PM|+|P{F_2}|=2\sqrt{2}$,
又∵|PM|=|PF1|,∴$|P{F_1}|+|P{F_2}|=2\sqrt{2}>|{F_1}{F_2}|=2$,
由橢圓的定義可知2a=2$\sqrt{2}$,c=1,b=1.
即有動(dòng)點(diǎn)P的軌跡G的方程為$\frac{x^2}{2}+{y^2}=1$;
(Ⅱ)證明:依題意$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$,消去y,得
(1+2k2)x2+4kmx+2m2-2=0,
設(shè)M(x1,y1),N(x2,y2),
則x1+x2=-$\frac{4km}{1+2{k}^{2}}$,x1x2=$\frac{2{m}^{2}-2}{1+2{k}^{2}}$,
又${k}_{{F}_{1}M}$=$\frac{k{x}_{1}+m}{{x}_{1}-1}$,${k}_{{F}_{1}N}$=$\frac{k{x}_{2}+m}{{x}_{2}-1}$
依題意得,${k}_{{F}_{1}M}$+${k}_{{F}_{1}N}$=0,
即$\frac{k{x}_{1}+m}{{x}_{1}-1}$+$\frac{k{x}_{2}+m}{{x}_{2}-1}$=0,
化簡(jiǎn)得:2kx1x2+(m-k)(x1+x2)-2m=0,
∴2k•$\frac{2{m}^{2}-2}{1+2{k}^{2}}$+(m-k)(-$\frac{4km}{1+2{k}^{2}}$)-2m=0,
整理得,m=-2k,
∴直線l的方程為y=k(x-2),
因此直線l經(jīng)過(guò)定點(diǎn),該定點(diǎn)坐標(biāo)為(2,0).

點(diǎn)評(píng) 本題考查軌跡方程的求法,注意運(yùn)用垂直平分線定理和橢圓的定義,考查直線恒過(guò)定點(diǎn)的求法,注意運(yùn)用直線和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理和直線的斜率公式,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=$lo{g}_{\frac{1}{2}}$|cos($\frac{π}{3}$-x)|.
(1)求其定義域和值域;
(2)判斷其奇偶性;
(3)求其周期;
(4)寫出單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知圓O1:(x-2)2+y2=16和圓O2:x2+y2=r2(0<r<2),動(dòng)圓M與圓O1、圓O2都相切,切圓圓心M的軌跡為兩個(gè)橢圓,這兩個(gè)橢圓的離心率分別為e1,e2(e1>e2),則e1+2e2的最小值是$\frac{3+2\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知橢圓:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{^{2}}$=1,左右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F1的直線l交橢圓于A,B兩點(diǎn),若AF2+BF2的最大值為5,則橢圓方程為$\frac{x^2}{4}+\frac{y^2}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)AB是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的長(zhǎng)軸,若把AB給100等分,過(guò)每個(gè)分點(diǎn)作AB的垂線,交橢圓的上半部分于P1、P2、…、P99,F(xiàn)1為橢圓的左焦點(diǎn),則|F1A|+|F1P1|+|F1P2|+…+|F1P99|+|F1B|的值是101a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,已知矩形ABCD所在平面外一點(diǎn)P,PA⊥平面ABCD,E、F、G分別是AB、PC、CD的中點(diǎn),|PA|=|AB|=|AD|=1,
(1)求證:EF∥平面PAD;
(2)求證EF⊥CD,EF⊥PD,且|EF|=$\frac{1}{2}$|PD|;
(3)求直線PD與AC所成的角;
(4)求直線AP與平面PCD所成的角;
(5)求平面PAB與平面PCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知點(diǎn)F1,F(xiàn)2為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點(diǎn),若橢圓上存在點(diǎn)P使得$|{\overrightarrow{P{F_1}}}|=2|{\overrightarrow{P{F_2}}}|$,則此橢圓的離心率的取值范圍是(  )
A.(0,$\frac{1}{3}$)B.(0,$\frac{1}{2}$]C.($\frac{1}{3}$,$\frac{1}{2}$]D.[$\frac{1}{3}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在△ABC中.
(1)|$\overrightarrow{AC}$|=2,AD⊥BC于D,∠BAD=45°,∠DAC=60°,求$\overrightarrow{BD}$•$\overrightarrow{AC}$,$\overrightarrow{BA}$•$\overrightarrow{AC}$.
(2)如果(1)的條件下,△ABC中,PQ是以A為圓心,$\sqrt{2}$為半徑的圓的直徑,求$\overrightarrow{BP}•\overline{CQ}$的最大值,最小值,并指出取最大值,最小值時(shí)向量$\overrightarrow{PQ}$與$\overrightarrow{BC}$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某沿海城市的海邊有兩條相互垂直的直線型公路l1、l2,海岸邊界MPN近似地看成一條曲線段.為開發(fā)旅游資源,需修建一條連接兩條公路的直線型觀光大道AB,且直線AB與曲線MPN有且僅有一個(gè)公共點(diǎn)P(即直線與曲線相切),如圖所示.若曲線段MPN是函數(shù)$y=\frac{a}{x}$圖象的一段,點(diǎn)M到l1、l2的距離分別為8千米和1千米,點(diǎn)N到l2的距離為10千米,點(diǎn)P到l2的距離為2千米.以l1、l2分別為x、y軸建立如圖所示的平面直角坐標(biāo)系xOy.
(1)求曲線段MPN的函數(shù)關(guān)系式,并指出其定義域;
(2)求直線AB的方程,并求出公路AB的長(zhǎng)度(結(jié)果精確到1米).

查看答案和解析>>

同步練習(xí)冊(cè)答案