4.設(shè)AB是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的長(zhǎng)軸,若把AB給100等分,過(guò)每個(gè)分點(diǎn)作AB的垂線,交橢圓的上半部分于P1、P2、…、P99,F(xiàn)1為橢圓的左焦點(diǎn),則|F1A|+|F1P1|+|F1P2|+…+|F1P99|+|F1B|的值是101a.

分析 根據(jù)橢圓的定義便可以得到$\sum_{i=1}^{99}(|{F}_{1}{P}_{i}|+|{F}_{2}{P}_{i}|)=2a•99$,而由題意可知P1、P2、…、P99關(guān)于y軸對(duì)稱分布,從而便可得到$\sum_{i=1}^{99}(|{F}_{1}{P}_{i}|)=\frac{1}{2}\sum_{i=1}^{99}(|{F}_{1}{P}_{i}|+|{F}_{2}{P}_{i}|)$,而|F1A|+|F1B|=2a,這樣即可得出|F1A|+|F1P1|+|F1P2|+…+|F1P99|+|F1B|的值.

解答 解:由橢圓的定義知|F1Pi|+|F2Pi|=2a(i=1,2,…,99);
∴$\sum_{i=1}^{99}(|{F}_{1}{P}_{i}|+|{F}_{2}{P}_{i}|)=2a•99$;
由題意知P1,P2,…,P99關(guān)于y軸成對(duì)稱分布;
∴$\sum_{i=1}^{99}(|{F}_{1}{P}_{i}|)=\frac{1}{2}\sum_{i=1}^{99}(|{F}_{1}{P}_{i}|+|{F}_{2}{P}_{i}|)=99a$
又∵|F1A|+|F1B|=2a;
故所求的值為101a.
故答案為:101a.

點(diǎn)評(píng) 考查橢圓的定義,橢圓的兩焦點(diǎn)關(guān)于y軸對(duì)稱,以及橢圓的標(biāo)準(zhǔn)方程,橢圓的長(zhǎng)軸的概念,清楚把線段100等分的概念,以及橢圓的對(duì)稱性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知集合A={y|y=|x|+1},B={x|x2≥1},則下列結(jié)論正確的是(  )
A.-3∈AB.3∉BC.A∩B=AD.A∪B=A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在平面直角坐標(biāo)系xOy內(nèi),動(dòng)點(diǎn)P到定點(diǎn)F(-1,0)的距離與P到定直線x=-4的距離之比為$\frac{1}{2}$.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)若軌跡C上的動(dòng)點(diǎn)N到定點(diǎn)M(m,0)(0<m<2)的距離的最小值為1,求m的值.
(3)設(shè)點(diǎn)A、B是軌跡C上兩個(gè)動(dòng)點(diǎn),直線OA、OB與軌跡C的另一交點(diǎn)分別為A1、B1,且直線OA、OB的斜率之積等于$-\frac{3}{4}$,問(wèn)四邊形ABA1B1的面積S是否為定值?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$離心率為$e=\frac{{\sqrt{3}}}{2}$,以原點(diǎn)為圓心,以橢圓C的短半軸長(zhǎng)為半徑的圓O與直線l1:$y=x+\sqrt{2}$相切.
(1)求橢圓C的方程;
(2)設(shè)不過(guò)原點(diǎn)O的直線l2與該橢圓交于P、Q兩點(diǎn),滿足直線OP,PQ,OQ的斜率依次成等比數(shù)列,求△OPQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為e=$\frac{\sqrt{3}}{2}$,且C1的右焦點(diǎn)與拋物線C2:y2=4$\sqrt{3}$x的焦點(diǎn)相同.
(1)求橢圓C1的方程;
(2)求經(jīng)過(guò)點(diǎn)P(-2,0)分別作斜率為k1、k2(k1≠k2)的兩條直線,兩直線分別與橢圓C1交于M、N兩點(diǎn),當(dāng)直線MN與y軸垂直時(shí),求k1•k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖所示,點(diǎn)F1(-1,0),F(xiàn)2(1,0),動(dòng)點(diǎn)M到點(diǎn)F2的距離是$2\sqrt{2}$,線段MF1的中垂線交MF2于點(diǎn)P.
(Ⅰ)當(dāng)點(diǎn)M變化時(shí),求動(dòng)點(diǎn)P的軌跡G的方程;
(Ⅱ)設(shè)直線l:y=kx+m與軌跡G交于M、N兩點(diǎn),直線F2M與F2N的傾斜角分別為α、β,且α+β=π,求證:直線l經(jīng)過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知四棱錐P-ABCD,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=2,點(diǎn)E為AB中點(diǎn),點(diǎn)F為PD中點(diǎn).
(1)證明平面PED⊥平面PAB;
(2)求二面角P-AB-F的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.“x>2“是“x2+2x-8>0“成立的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)f(x)=|x-4|-|x-1|.
(Ⅰ)求不等式f(x)≤1的解集;
(Ⅱ)若{x|f(x)≥t2-2t}∩{x|0≤x≤2}≠∅,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案