10.若x,y滿足$\left\{\begin{array}{l}{x≤2}\\{x-y+1≥0}\\{x+y-2≥0}\end{array}\right.$.則z=2x-y的最小值為(  )
A.4B.1C.0D.-$\frac{1}{2}$

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x≤2}\\{x-y+1≥0}\\{x+y-2≥0}\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x-y+1=0}\\{x+y-2=0}\end{array}\right.$,解得A($\frac{1}{2},\frac{3}{2}$),
化目標(biāo)函數(shù)z=2x-y為y=2x-z,
由圖可知,當(dāng)直線y=2x-z過點(diǎn)A($\frac{1}{2},\frac{3}{2}$)時(shí),直線在y軸上的截距最大,z有最小值為2×$\frac{1}{2}-\frac{3}{2}=-\frac{1}{2}$.
故選:D.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.(2x+3y)8的展開式中共有9項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在一次調(diào)查中,甲、乙、丙、丁四名同學(xué)的閱讀量有如下關(guān)系:甲、丙閱讀量之和與乙、丁閱讀量之和相同,甲、乙閱讀量之和大于丙、丁閱讀量之和,丁的閱讀量大于乙、丙閱讀量之和.那么這四名同學(xué)按閱讀量從大到小的排序依次為甲丁乙丙.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=$\frac{1}{1+px+q{x}^{2}}$(其中p2+q2≠0),且存在公差不為0的無窮等差數(shù)列{an},使得函數(shù)在其定義域內(nèi)還可以表示為f(x)=1+a1x+a2x+a2x2+…+anxn+…
(1)求a1,a2的值(用p,q表示);
(2)求{an}的通項(xiàng)公式;
(3)當(dāng)n∈N*且n≥2時(shí),比較(an-1an與(an)${\;}^{{a}_{n-1}}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)=$\frac{a}{x-1}$+bcos($\frac{π}{2}x$),f(1-$\sqrt{2}$)=2,則f(1+$\sqrt{2}$)=(  )
A.0B.-2C.-4D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)a,b都是不等于1的正數(shù),則“a>b”是“l(fā)ogb3>loga3>0”必要不充分的條件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知復(fù)數(shù)z滿足|z|-$\overline{z}$=2-4i,則z=3-4i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.某學(xué)校小學(xué)部有270人,初中部有360人,高中部有300人,為了調(diào)查學(xué)生身體發(fā)育狀況的某項(xiàng)指標(biāo),若從初中部抽取了12人,則從該校應(yīng)一共抽取31人進(jìn)行該項(xiàng)調(diào)查.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.以下各式當(dāng)n→∞時(shí),極限值為$\frac{1}{2}$的是( 。
A.$\frac{n-2}{2n(n+1)}$B.$\frac{2{n}^{2}+1}{4n+1}$
C.($\sqrt{n+1}$-$\sqrt{n}$)$\sqrt{n}$D.$\frac{1+4+7+…+(3n-2)}{2{n}^{2}}$

查看答案和解析>>

同步練習(xí)冊(cè)答案