20.以下各式當(dāng)n→∞時,極限值為$\frac{1}{2}$的是(  )
A.$\frac{n-2}{2n(n+1)}$B.$\frac{2{n}^{2}+1}{4n+1}$
C.($\sqrt{n+1}$-$\sqrt{n}$)$\sqrt{n}$D.$\frac{1+4+7+…+(3n-2)}{2{n}^{2}}$

分析 對選項一一加以判斷,運用數(shù)列的極限和分子有理化、等差數(shù)列的求和公式,即可得到C正確.

解答 解:對于A,$\underset{lim}{n→∞}$$\frac{n-2}{2{n}^{2}+2n}$=$\underset{lim}{n→∞}$$\frac{\frac{n-2}{{n}^{2}}}{2+\frac{2}{n}}$=$\frac{0}{1+0}$=0;
對于B,$\underset{lim}{n→∞}$$\frac{2{n}^{2}+1}{4n+1}$不存在;
對于C,$\underset{lim}{n→∞}$($\sqrt{n+1}$-$\sqrt{n}$)$\sqrt{n}$=$\underset{lim}{n→∞}$$\frac{\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}$=$\underset{lim}{n→∞}$$\frac{1}{\sqrt{1+\frac{1}{n}}+1}$=$\frac{1}{1+1}$=$\frac{1}{2}$;
對于D,$\underset{lim}{n→∞}$$\frac{1+4+7+…+(3n-2)}{2{n}^{2}}$=$\underset{lim}{n→∞}$$\frac{(3n-1)n}{4{n}^{2}}$=$\underset{lim}{n→∞}$$\frac{3-\frac{1}{n}}{4}$=$\frac{3}{4}$.
故選:C.

點評 本題考查數(shù)列的極限的求法,同時考查等差數(shù)列的求和公式的運用,常見數(shù)列的極限,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若x,y滿足$\left\{\begin{array}{l}{x≤2}\\{x-y+1≥0}\\{x+y-2≥0}\end{array}\right.$.則z=2x-y的最小值為( 。
A.4B.1C.0D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知一組數(shù)據(jù)按從小到大的順序排列為:14,19,x,23,27,其中中位數(shù)是22,則x的值為( 。
A.24B.23C.22D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=3sin(2x-$\frac{π}{3}$)(x∈R)的圖象為C,如下結(jié)論中正確的是①②③④⑤(寫出所在正確結(jié)論的編號).
①圖象C關(guān)于直線x=$\frac{11}{12}$π對稱;
②圖象C關(guān)于點($\frac{2π}{3}$,0)對稱;
③函數(shù)f(x)在區(qū)間(-$\frac{π}{12}$,$\frac{5π}{12}$)內(nèi)是增函數(shù);
④由f(x1)=f(x2)=0可得x1-x2必是$\frac{π}{4}$的整數(shù)倍;
⑤函數(shù)y=f(x)的表達式可以改寫為f(x)=3cos(2x+$\frac{7π}{6}$);
⑥將圖象C向左平移$\frac{π}{3}$個單位長度后得到的函數(shù)為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.把一枚硬幣連續(xù)拋擲3次,恰好有兩次反面向上的概率為$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.為了解大學(xué)生觀看某電視節(jié)目是否與性別有關(guān),一所大學(xué)心理學(xué)教師從該校學(xué)生中隨機抽取了50人進行問卷調(diào)查,得到了如下的列聯(lián)表,若該教師采用分層抽樣的方法從50份問卷調(diào)查中繼續(xù)抽查了10份進行重點分析,知道其中喜歡看該節(jié)目的有6人.
喜歡看該節(jié)目不喜歡看該節(jié)目合計
女生5
男生10
合計50
(Ⅰ)請將上面的列聯(lián)表補充完整;
(Ⅱ)是否有99.5%的把握認為喜歡看該節(jié)目節(jié)目與性別有關(guān)?說明你的理由;
(Ⅲ)已知喜歡看該節(jié)目的10位男生中,5位喜歡看新聞,3位喜歡看動畫片,2位喜歡看韓劇,現(xiàn)從喜歡看新聞、動畫片和韓劇的男生中各選出1名進行其他方面的調(diào)查,求喜歡看動畫片的男生甲和喜歡看韓劇的男生乙不全被選中的概率.
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d;
①當(dāng)K2≥3.841時有95%的把握認為ξ、η有關(guān)聯(lián);
②當(dāng)K2≥6.635時有99%的把握認為ξ、η有關(guān)聯(lián).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)y=f(x)在x=x0處可導(dǎo),則$\underset{lim}{h→∞}\frac{f({x}_{0}+h)-f({x}_{0}-h)}{h}$等于(  )
A.f′(x0B.2f′(x0C.-2f′(x0D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{2x-y-2≤0}\\{x-2y+2≥0}\\{x+y-1≥0}\end{array}\right.$,則z=(a2+1)x-3(a2+1)y的最小值是-20,則實數(shù)a=±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.一質(zhì)點的運動方程為s(t)=$\sqrt{t+1}$,則它在t=3時的速度為$\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊答案