某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):
單價(jià)(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)50件;(2)元
解析試題分析:(1)由于線性回歸直線方程恒過樣本中心點(diǎn),故選由題中數(shù)據(jù)求出和的值,再由已知b=20,代入回歸直線方程中就可求出a的值,然后令x=10,求得的y的值,即是為預(yù)報(bào)單價(jià)為10元時(shí)的銷量;(2)由已知可將工廠的利潤表達(dá)成為該產(chǎn)品的單價(jià)x的函數(shù),由于該函數(shù)是一個(gè)二次函數(shù),利用配方法可求出使工廠利潤最大時(shí)對應(yīng)的單價(jià)x的值;注意實(shí)際應(yīng)用問題最后一定要回答.
試題解析:(1)由于,
, 4分
所以. 6分
從而回歸直線方程為.
據(jù)此模型,單價(jià)為10元時(shí)的銷量為件 8分
(2)設(shè)工廠獲得的利潤為元,依題意得
12分
當(dāng)且僅當(dāng)時(shí),取得最大值.
故當(dāng)單價(jià)定為元時(shí),工廠可獲得最大利潤. 14分
考點(diǎn):1.線性回歸;2.二次函數(shù)的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
高二某班50名學(xué)生在一次百米測試中,成績?nèi)慷冀橛?3秒到18秒之間,將測試結(jié)果按如下方式分成五組,第一組[13,14),第二組[14,15)…第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.
(1)若成績大于等于14秒且小于16秒規(guī)定為良好,求該班在這次百米測試中成績?yōu)榱己玫娜藬?shù).
(2)請根據(jù)頻率分布直方圖,估計(jì)樣本數(shù)據(jù)的眾數(shù)和中位數(shù)(精確到0.01).
(3)設(shè)表示該班兩個(gè)學(xué)生的百米測試成績,已知,求事件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如下:
零件的個(gè)數(shù)(個(gè)) | 2 | 3 | 4 | 5 |
加工的時(shí)間(小時(shí)) | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
“世界睡眠日”定在每年的3月21日,2009年的世界睡眠日主題是“科學(xué)管理睡眠”,以提高公眾對健康睡眠的自我管理能力和科學(xué)認(rèn)識.為此某網(wǎng)站于2009年3月13日到3月20日持續(xù)一周網(wǎng)上調(diào)查公眾日平均睡眠的時(shí)間(單位:小時(shí)),共有2000人參加調(diào)查,現(xiàn)將數(shù)據(jù)整理分組后如題中表格所示.
序號 | 分組睡眠時(shí)間 | 組中值 | 頻數(shù) (人數(shù)) | 頻率 |
1 | 4.5 | 80 | ( ) | |
2 | 5.5 | 520 | 0.26 | |
3 | 6.5 | 600 | 0.30 | |
4 | 7.5 | ( ) | ( ) | |
5 | 8.5 | 200 | 0.10 | |
6 | 9.5 | 40 | 0.02 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為調(diào)查某市老年人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該市調(diào)查了500位老年人,結(jié)果如右表.
性別 是否需要志愿者 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某班主任對全班50名學(xué)生的積極性和對待班級工作的態(tài)度進(jìn)行了調(diào)查,
統(tǒng)計(jì)數(shù)據(jù)如下表所示:
| 積極參加班級工作 | 不太積極參加班級工作 | 合計(jì) |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性一般 | 6 | 19 | 25 |
合計(jì) | 24 | 26 | 50 |
|
P(K2≥k0 ) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某電視臺在一次對文藝節(jié)目和新聞節(jié)目觀眾的抽樣調(diào)查中,隨機(jī)抽取了100名電視觀眾,相關(guān)數(shù)據(jù)如下表所示:
| 文藝節(jié)目 | 新聞節(jié)目 | 總計(jì) |
20歲到40歲 | 40 | 20 | 60 |
40歲以上 | 15 | 25 | 40 |
總計(jì) | 55 | 45 | 100 |
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某種產(chǎn)品的廣告費(fèi)支出z與銷售額y(單位:萬元)之間有如下對應(yīng)數(shù)據(jù):
若廣告費(fèi)支出z與銷售額y回歸直線方程為多一6.5z+n(n∈R).
(1)試預(yù)測當(dāng)廣告費(fèi)支出為12萬元時(shí),銷售額是多少?
(2)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預(yù)測值與實(shí)際值之差的絕對值不超過5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知某天一工廠甲、乙、丙三個(gè)車間生產(chǎn)的產(chǎn)品件數(shù)分別是1500、1300、1200,現(xiàn)用分層抽樣方法抽取了一個(gè)樣本容量為n的樣本,進(jìn)行質(zhì)量檢查,已知丙車間抽取了24件產(chǎn)品,則n=____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com