分析 (1)根據(jù)向量的坐標(biāo)運(yùn)算和向量的平行即可得到關(guān)于k的方程,解得即可
(2)利用向量的線性運(yùn)算法則及向量相等即可得出.
解答 解:(1)$\overrightarrow{a}$+k$\overrightarrow{c}$=(3,2)+k(4,1)=(3+4k,2+k),
2$\overrightarrow$+$\overrightarrow{c}$=2(-1,2)+(4,1)=(2,5),
∵$(\overrightarrow a+k\overrightarrow c)∥(2\overrightarrow b+n\overrightarrow c)$,
∴5(3+4k)=2(2+k),
解得k=-$\frac{11}{18}$,
(2)$\overrightarrow a=m\overrightarrow b-n\overrightarrow c$,
∴(3,2)=m(-1,2)-n(4,1)=(-m-4n,2m-n),
∴$\left\{\begin{array}{l}{3=-m-4n}\\{2=2m-n}\end{array}\right.$,
解得m=$\frac{5}{9}$,n=-$\frac{8}{9}$
點(diǎn)評(píng) 本題考查了向量坐標(biāo)形式的加減法和數(shù)乘法則的綜合運(yùn)算,向量共線的坐標(biāo)條件,直接代入公式求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{2\sqrt{39}}}{3}$ | B. | $\frac{26}{3}\sqrt{3}$ | C. | $\frac{8}{3}\sqrt{3}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f′(x)>0,g′(x)<0 | B. | f′(x)>0,g′(x)>0 | C. | f′(x)<0,g′(x)<0 | D. | f′(x)<0,g′(x)>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com