【題目】如圖1是四棱錐的直觀圖,其正(主)視圖和側(cè)(左)視圖均為直角三角形,俯視圖外框?yàn)榫匦,相關(guān)數(shù)據(jù)如圖2所示.

(1)設(shè)中點(diǎn)為,在直線上找一點(diǎn),使得平面,并說明理由;

(2)若二面角的平面角的余弦值為,求四棱錐的外接球的表面積.

【答案】(1) 見解析;(2) .

【解析】試題分析:(1)利用中位線定理構(gòu)造平行四邊形,得到;(2) 由二面角的平面角的余弦值為,得到,明確外接球的直徑即為PB,易得四棱錐的外接球的表面積.

試題解析:

(1)當(dāng)中點(diǎn)時, 平面,

證明如下:取中點(diǎn),連接、、,

中, 、分別是、的中點(diǎn),

的中位線,

,又中點(diǎn), ,

,

∴四邊形是平行四邊形,

.

又∵平面, 平面,

平面.

(2)由三視圖可得平面

在底面中,過于點(diǎn),連接,

平面, 平面,

平面,

平面,平面,

平面,

是二面角的平面角,

在底面矩形 , ,, ,

中,又

,.

由直觀圖易知四棱錐的外接球的直徑即為

.

故四棱錐的外接球的表面積為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有6名奧運(yùn)會志愿者,其中志愿者通曉日語, 通曉俄語, 通曉韓語,從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.

(1)求被選中的概率;

(2)求不全被選中的概率;

(3)若6名奧運(yùn)會志愿者每小時派兩人值班,現(xiàn)有兩名只會日語的運(yùn)動員到來,求恰好遇到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)是否存在實(shí)數(shù),使函數(shù)上有最小值2?若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.如圖,網(wǎng)格紙上正方形小格的邊長為1,圖中粗線畫出的是某幾何體毛坯的三視圖,第一次切削,將該毛坯得到一個表面積最大的長方體;第二次切削沿長方體的對角面刨開,得到兩個三棱柱;第三次切削將兩個三棱柱分別沿棱和表面的對角線刨開得到兩個鱉臑和兩個陽馬,則陽馬與鱉臑的體積之比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù),是自然對數(shù)的底數(shù),曲線在點(diǎn)處的切線與軸平行

1的值;

2的單調(diào)區(qū)間;

3設(shè),其中的導(dǎo)函數(shù)證明:對任意,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓.

(1)求證對任意實(shí)數(shù),該圓恒過一定點(diǎn);

(2)若該圓與圓切,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,矩形ABCD的一邊AB在x軸上,另一邊CD在x軸上方,且AB=8,BC=6,其中A(-4,0、B4,0

(1若A、B為橢圓的焦點(diǎn),橢圓經(jīng)過C、D兩點(diǎn),求橢圓的方程

2若A、B為雙曲線的焦點(diǎn),且雙曲線經(jīng)過C、D兩點(diǎn),求雙曲線的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)不等式組所表示的平面區(qū)域?yàn)?/span>Dn,記Dn內(nèi)的格點(diǎn)(格點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))的個數(shù)為f(n)(nN*).

1)求f(1)、f(2)的值及f(n)的表達(dá)式;

2)設(shè)bn=2nf(n)Sn{bn}的前n項(xiàng)和,求Sn

3)記,若對于一切正整數(shù)n,總有Tnm成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐P-ABCD中,底面ABCD是棱長為2的正方形,側(cè)面PAD為正三角形,且面PAD⊥面ABCD,E、F分別為棱AB、PC的中點(diǎn).

(1)求證:EF∥平面PAD;

(2)求三棱錐B-EFC的體積;

(3)求二面角P-EC-D的正切值.

查看答案和解析>>

同步練習(xí)冊答案