【題目】我國唐代天文學(xué)家、數(shù)學(xué)家張逐曾以“李白喝酒”為題編寫了如下一道題:“李白街上走,提壺去買酒,遇店加一倍,見花喝一斗(計(jì)量單位),三遇店和花,喝光壺中酒.”問最后一次遇花時(shí)有酒________斗,原有酒________斗.
【答案】1
【解析】
用倒推的方法,根據(jù)最后一次喝光酒,且見花喝一斗,可知最后一次遇花時(shí)有酒1斗,然后設(shè)原有酒x斗,根據(jù)他三遇店和花,遇店加一倍,見花喝一斗,遞推可得第三次見店又見花后酒有斗,再根據(jù)最后一次喝光酒,令求解即可.
因?yàn)樽詈笠淮魏裙饩,且見花喝一斗?/span>
所以最后一次遇花時(shí)有酒1斗,
設(shè)原有酒x斗,由他三遇店和花,遇店加一倍,見花喝一斗得:
第一次見店又見花后酒有斗,
第二次見店又見花后酒有斗,
第三次見店又見花后酒有斗,
因?yàn)樽詈笠淮魏裙饩疲?/span>
所以,
解得.
故答案為:(1). 1 (2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在處的切線的方程為,求此時(shí)的最值;
(2)若對任意,,不等式成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某病毒研究所為了更好地研究“新冠”病毒,計(jì)劃改建十個(gè)實(shí)驗(yàn)室,每個(gè)實(shí)驗(yàn)室的改建費(fèi)用分為裝修費(fèi)和設(shè)備費(fèi),每個(gè)實(shí)驗(yàn)室的裝修費(fèi)都一樣,設(shè)備費(fèi)從第一到第十實(shí)驗(yàn)室依次構(gòu)成等比數(shù)列,已知第五實(shí)驗(yàn)室比第二實(shí)驗(yàn)室的改建費(fèi)用高42萬元,第七實(shí)驗(yàn)室比第四實(shí)驗(yàn)室的改建費(fèi)用高168萬元,并要求每個(gè)實(shí)驗(yàn)室改建費(fèi)用不能超過1700萬元.則該研究所改建這十個(gè)實(shí)驗(yàn)室投入的總費(fèi)用最多需要( )
A.3233萬元B.4706萬元C.4709萬元D.4808萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,以為圓心過橢圓左頂點(diǎn)的圓與直線相切于,且滿足.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓右焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn),,問內(nèi)切圓面積是否有最大值?若有,求出最大值;若沒有,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,真四棱柱的底面是菱形,,,,E,M,N分別是BC,,的中點(diǎn).
(1)證明:面;
(2)求平面DMN與平面所成銳角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)若函數(shù)在處取得極大值,求實(shí)數(shù)的值
(2)函數(shù),當(dāng)時(shí),在處取得最大值,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司準(zhǔn)備設(shè)計(jì)一個(gè)精美的心形巧克力盒子,它是由半圓、半圓和正方形ABCD組成的,且.設(shè)計(jì)人員想在心形盒子表面上設(shè)計(jì)一個(gè)矩形的標(biāo)簽EFGH,標(biāo)簽的其中兩個(gè)頂點(diǎn)E,F在AM上,另外兩個(gè)頂點(diǎn)G,H在CN上(M,N分別是AB,CB的中點(diǎn)).設(shè)EF的中點(diǎn)為P,,矩形EFGH的面積為.
(1)寫出S關(guān)于的函數(shù)關(guān)系式
(2)當(dāng)為何值時(shí)矩形EFGH的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)為正方形邊上異于點(diǎn),的動(dòng)點(diǎn),將沿翻折成,在翻折過程中,下列說法正確的是( )
A.存在點(diǎn)和某一翻折位置,使得
B.存在點(diǎn)和某一翻折位置,使得平面
C.存在點(diǎn)和某一翻折位置,使得直線與平面所成的角為45°
D.存在點(diǎn)和某一翻折位置,使得二面角的大小為60°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)x∈R,其中a,b∈R.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)存在極值點(diǎn)x0,且f(x1)= f(x0),其中x1≠x0,求證:x1+2x0=3;
(Ⅲ)設(shè)a>0,函數(shù)g(x)= |f(x)|,求證:g(x)在區(qū)間[0,2]上的最大值不小于.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com