【題目】下列四個命題,其中正確命題的個數(shù)(
①若a>|b|,則a2>b2
②若a>b,c>d,則a﹣c>b﹣d
③若a>b,c>d,則ac>bd
④若a>b>o,則
A.3個
B.2個
C.1個
D.0個

【答案】C
【解析】解:①若a>|b|,則a2>b2 , ①正確;
②若a>b,c>d,則a﹣c>b﹣d錯誤,如3>2,﹣1>﹣3,而3﹣(﹣1)=4<5=2﹣(﹣3);
③若a>b,c>d,則ac>bd錯誤,如3>1,﹣2>﹣3,而3×(﹣2)<1×(﹣3);
④若a>b>o,則 ,當(dāng)c>0時, ,④錯誤.
∴正確命題的個數(shù)只有1個.
故選:C.
【考點精析】本題主要考查了命題的真假判斷與應(yīng)用的相關(guān)知識點,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在高為2的梯形ABCD中,,,過A、B分別作,,垂足分別為E、已知,將DC沿AE、BF折向同側(cè),得空間幾何體,如圖2.

,求證:

,線段AB的中點是P,求CP與平面ACD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(﹣2sin(π﹣x),cosx), =( cosx,2sin( ﹣x)),函數(shù)f(x)=1﹣
(1)若x∈[0, ],求函數(shù)f(x)的值域;
(2)當(dāng)x∈[0,π]時,求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=cos2x+asinx在區(qū)間( , )是減函數(shù),則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為,且過點.

(1)求的方程;

(2)若動點在直線上,過作直線交橢圓兩點,使得,再過作直線,證明:直線恒過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在原點O,焦點在x軸上,離心率為 ,橢圓C上的點到右焦點的最大距離為3.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)斜率存在的直線l與橢圓C交于A,B兩點,并且滿足|2 + |=|2 |,求直線在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓經(jīng)過點,離心率為

(1)求的方程;

(2)過的左焦點且斜率不為的直線相交于,兩點,線段的中點為,直線與直線相交于點,若為等腰直角三角形,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確命題的個數(shù)是(
①對于命題p:x∈R,使得x2+x﹣1<0,則¬p:x∈R,均有x2+x﹣1>0;
②p是q的必要不充分條件,則¬p是¬q的充分不必要條件;
③命題“若x=y,則sinx=siny”的逆否命題為真命題;
④“m=﹣1”是“直線l1:mx+(2m﹣1)y+1=0與直線l2:3x+my+3=0垂直”的充要條件.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習(xí)冊答案