4.若實(shí)數(shù)x,y滿(mǎn)足x2-4xy+4y2+4x2y2=2,則當(dāng)x+2y的最大值為$\sqrt{6}$.

分析 化簡(jiǎn)可得(x+2y)2+4(xy-1)2=6,從而解得.

解答 解:∵x2-4xy+4y2+4x2y2=2,
∴x2+4xy+4y2+4x2y2-8xy=2,
∴(x+2y)2+4(xy-1)2=6,
∴x+2y的最大值為$\sqrt{6}$,
故答案為:$\sqrt{6}$.

點(diǎn)評(píng) 本題考查了整體思想與轉(zhuǎn)化思想的應(yīng)用,同時(shí)考查了構(gòu)造法的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知f(x)=ex(sinx-cosx),則函數(shù)f(x)的圖象x=$\frac{π}{2}$處的切線的斜率為2e${\;}^{\frac{π}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知θ∈[0,π),集合A={sinθ,1},B={$\frac{1}{2}$,cosθ},A∩B≠∅,那么θ=$\frac{π}{6}$或$\frac{π}{4}$或0或$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知⊙O:x2+y2=8,P是⊙O上在第一象限的一點(diǎn),過(guò)點(diǎn)P作⊙O的切線與x軸,y軸的正半軸圍成一個(gè)三角形,當(dāng)三角形的面積最小時(shí),切點(diǎn)為P1,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$且過(guò)點(diǎn)P1
(1)試求橢圓C的方程;
(2)過(guò)M(-1,0)作直線l與橢圓C交于A、B兩點(diǎn),且橢圓C的左、右焦點(diǎn)分別為F1,F(xiàn)2,△F1AF2,△F1BF2的面積分別為S1,S2,試確定|S1-S2|取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知集合A={x||x-2|<3,x∈R},B={x|x2+(1-a)x-a<0,x∈R},若B⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列關(guān)于函數(shù)y=ln|x|的敘述正確的是( 。
A.是奇函數(shù),且在(0,+∞)上是增函數(shù)B.是奇函數(shù),且在(0,+∞)上是減函數(shù)
C.是偶函數(shù),且在(0,+∞)上是減函數(shù)D.是偶函數(shù),且在(0,+∞)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.下列命題:
①若α+β=$\frac{7π}{4}$,則(1-tanα)•(1-tanβ)=2;
②已知$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(2,λ),且$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角,則實(shí)數(shù)λ的取值范圍是λ<1;
③已知O平面上一定點(diǎn),A,B,C是平面上不共線的三個(gè)點(diǎn),動(dòng)點(diǎn)P滿(mǎn)足$\overrightarrow{OP}$=$\overrightarrow{OA}$+$λ(\overrightarrow{AB}+\overrightarrow{AC})$,λ∈(0,+∞),則P的軌跡一定通過(guò)△ABC的重心;
④在△ABC所在的平面上有一點(diǎn)P,滿(mǎn)足$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{AB}$,則△PBC與△ABC的面積之比是$\frac{1}{2}$.
其中真命題的序號(hào)為①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在△ABC中,若a=$3\sqrt{2}$,cosC=$\frac{1}{3}$,S△ABC-=4$\sqrt{2}$,則b等于( 。
A.2$\sqrt{3}$B.$\sqrt{3}$C.4$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.某車(chē)向正南方向開(kāi)了S km后,向右轉(zhuǎn)30°角,然后又開(kāi)了2km,結(jié)果該車(chē)離出發(fā)點(diǎn)恰好2$\sqrt{3}$km,則S=($\sqrt{11}$-$\sqrt{3}$)km.

查看答案和解析>>

同步練習(xí)冊(cè)答案