已知函數(shù)f(x)=log 
1
3
|sin(x-
π
4
)|.
(1)求它的定義域和值域.
(2)判斷它的奇偶性,并求出它的單調(diào)區(qū)間.
考點(diǎn):復(fù)合函數(shù)的單調(diào)性,正弦函數(shù)的奇偶性,復(fù)合三角函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)對(duì)數(shù)的性質(zhì)即可求它的定義域和值域.
(2)根據(jù)奇偶性的定義即可判斷它的奇偶性,并求出它的單調(diào)區(qū)間.
解答: 解:(1)設(shè)t=|sin(x-
π
4
)|.由t=|sin(x-
π
4
)|>0解得x-
π
4
≠kπ,即x≠
π
4
+kπ,k∈Z,
即函數(shù)的定義域?yàn)閧x|x≠
π
4
+kπ}.
∵0<t≤1,所以y≥0,即函數(shù)的值域?yàn)閇0,+∞).
(2)∵函數(shù)的定義域?yàn)閧x|x≠
π
4
+kπ}關(guān)于原點(diǎn)不對(duì)稱,
∴函數(shù)f(x)為非奇非偶函數(shù),
∵函數(shù)t=|sin(x-
π
4
)|的遞減區(qū)間為(kπ-
π
4
,kπ+
π
4
],遞增區(qū)間為[kπ+
π
4
,kπ+
4
),
∴根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系可得函數(shù)f(x)=log 
1
3
|sin(x-
π
4
)|的遞增區(qū)間為(kπ-
π
4
,kπ+
π
4
],遞減區(qū)間為[kπ+
π
4
,kπ+
4
].
點(diǎn)評(píng):本題主要考查函數(shù)定義域,值域,奇偶性和單調(diào)性的判斷,根據(jù)復(fù)合函數(shù)以及三角函數(shù)的圖象和性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2013年某時(shí)刻,在釣魚(yú)島附近的海岸A處發(fā)現(xiàn)北偏東45°方向,距A處(
3
-1)海里的B處有一艘日本走私船,在A處北偏西75°方向,距A處2海里的C處的中國(guó)巡邏艦,奉命以10
3
海里/時(shí)的速度追截日本走私船,此時(shí)日本走私船正以10海里/時(shí)的速度,從B處向北偏東30°方向逃竄.問(wèn):中國(guó)巡邏艦沿什么方向行駛才能最快截獲日本走私船?并求出所需時(shí)間.(改編題)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
ax+bx≤0
logc(x+
1
9
)x>0
的部分圖象如圖所示
(1)求函數(shù)f(x)的表達(dá)式;
(2)探討關(guān)于x的方程f2(x)+b|f(x)|-1=0(b∈R)根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(1,2),B(
1
2
,
5
2
)是函數(shù)f(x)=
ax2+b
x
的圖象上的兩點(diǎn).
(1)求函數(shù)f(x)的解析式并寫(xiě)出定義域;
(2)判斷f(x)在區(qū)間(-∞,-1)上的單調(diào)性,并用定義法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿足:①定義域?yàn)镽;②?x∈R,有f(x+2)=f(x);③當(dāng)x∈[0,2]時(shí),f(x)=2|x-1|,設(shè)φ(x)=f(x)-
|x|
(x∈[-8,8])根據(jù)以上信息,可以得到函數(shù)φ(x)的零點(diǎn)個(gè)數(shù)為( 。
A、4B、5C、9D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,函數(shù)f(x)=x|x-a|+1(x∈R).
(Ⅰ)當(dāng)a=1時(shí),求所有使f(x)=x成立的x的值;
(Ⅱ)當(dāng)a=1時(shí),求函數(shù)y=f(x)在閉區(qū)間[0,2]上的最大值和最小值;
(Ⅲ)試討論函數(shù)y=f(x)的圖象與直線y=a的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)在(-1,1)上有定義,f(
1
2
)=-1,且滿足x,y∈(-1,1)時(shí),有f(x)+f(y)=f(
x+y
1+xy
),數(shù)列{xn}中,x1=
1
2
,xn+1=
2xn
1+xn2

(1)證明:f(x)在(-1,1)上為奇函數(shù);
(2)求數(shù)列{f(xn)}的通項(xiàng)公式;?
(3)求證:
1
f(x1)
+
1
f(x2)
+…+
1
f(xn)
>-
2n+5
n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在(0,+∞)上的函數(shù)f(x)=
xeax,0<x<1
2x+1,x≥1
,(其中e為自然對(duì)數(shù)的底數(shù)).
(1)若函數(shù)f(x)在x=1處連續(xù),求實(shí)數(shù)a的值;
(2)設(shè)數(shù)列{an}的各項(xiàng)均大于1,且an+1=f(2an-1)-1,a1=m,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解不等式:|x-1|+|x-3|>4.

查看答案和解析>>

同步練習(xí)冊(cè)答案