已知直線a過P(0,-1),且與以A(2,3)、B(-3,2)為端點(diǎn)的線段相交,則直線a的斜率k的取值范圍是(  )
A、(-∞,-1]∪[2,+∞)
B、(-∞,-1]
C、[2,+∞)
D、[-1,2]
考點(diǎn):直線的斜率
專題:直線與圓
分析:畫出圖形,由題意得 所求直線l的斜率k滿足 k≥kPB 或 k≤kPA,用直線的斜率公式求出kPB 和kPA 的值,解不等式求出直線l的斜率k的取值范圍.
解答: 解:如圖所示:由題意P(0,-1),A(2,3)、B(-3,2)得,所求直線l的斜率k滿足 k≤kPB 或 k≥kPA,
根據(jù)斜率公式可知kPA=
3+1
2-0
=2 kPB=
2-0
-3+1
=-1
則l的斜率k的取值范圍為k≤-1或k≥2
故選:A.
點(diǎn)評(píng):本題主要考查了直線的斜率,解題的關(guān)鍵是利用了數(shù)形結(jié)合的思想,解題過程較為直觀.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=1-
4
2ax+a
(a>0,a≠1)是定義在R上的奇函數(shù),當(dāng)x∈(0,1]時(shí),tf(x)≥2x-2恒成立,則實(shí)數(shù)t的取值范圍是( 。
A、[0,+∞)
B、[2,+∞)
C、[4,+∞)
D、(-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=loga
1+x
1-x

(1)求f(x)的定義域
(2)證明f(x)為奇函數(shù)
(3)求使f(x)<0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|3≤x≤7},B={x|2<x<10},C={x|x<a},全集為實(shí)數(shù)集R.
(1)求A∪B,(∁RA)∩B;
(2)如果A∩C=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A、y=
x+1
B、y=e-x
C、y=-x2+1
D、y=lg|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算下列各式(式中字母均為正數(shù))
(1)已知lg(x+2y)+lg(x-y)=lg2+lgx+lgy,求
x
y
的值;
(2)0.25-1×(
3
2
 
1
2
×(
27
4
 
1
4
-10×(2-
3
-1+(
1
300
 -
1
2
+16 
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
x+1
的定義域?yàn)椋ā 。?/div>
A、(-∞,-1]
B、[-1,+∞)
C、(-∞,-1)
D、(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線3x+4y-13=0與圓x2+y2-4x-6y+12=0的位置關(guān)系是( 。
A、相離B、相交
C、相切D、無法判定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(a)=
sin(π-a)cos(2π-a)
cos(-π-a)tana
,求f(
-31π
3
)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案