7.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知sin2$\frac{B-C}{2}+sinBsinC=\frac{1}{4}$.
(Ⅰ) 求角A的大;
(Ⅱ) 若b+c=2,求a的取值范圍.

分析 (Ⅰ)由已知利用三角函數(shù)恒等變換的應(yīng)用化簡可得$cos(B+C)=\frac{1}{2}$,由0<B+C<π,可求$B+C=\frac{π}{3}$,進而可求A的值.
(Ⅱ)根據(jù)余弦定理,得a2=(b-1)2+3,又b+c=2,可求范圍0<b<2,進而可求a的取值范圍.

解答 (本小題滿分12分)
解:(Ⅰ)由已知得$\frac{1-cos(B-C)}{2}+sinBsinC=\frac{1}{4}$,(2分)
化簡得$\frac{1-cosBcosC-sinBsinC}{2}+sinBsinC=\frac{1}{4}$,
整理得$cosBcosC-sinBsinC=\frac{1}{2}$,即$cos(B+C)=\frac{1}{2}$,(4分)
由于0<B+C<π,則$B+C=\frac{π}{3}$,
所以$A=\frac{2π}{3}$.(6分)
(Ⅱ)根據(jù)余弦定理,得${a^2}={b^2}+{c^2}-2bc•cos\frac{2π}{3}$(8分)
=b2+c2+bc
=b2+(2-b)2+b(2-b)
=b2-2b+4
=(b-1)2+3.(10分)
又由b+c=2,知0<b<2,可得3≤a2<4,
所以a的取值范圍是$[\sqrt{3}\;,\;2)$.(12分)

點評 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想和計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C1的中心在坐標(biāo)原點,兩焦點分別為雙曲線${C_2}:\frac{x^2}{2}-{y^2}=1$的頂點,直線$x+\sqrt{2}y=0$與橢圓C1交于A,B兩點,且點A的坐標(biāo)為$(-\sqrt{2},1)$,點P是橢圓C1上的任意一點,點Q滿足$\overrightarrow{AQ}•\overrightarrow{AP}=0$,$\overrightarrow{BQ}•\overrightarrow{BP}=0$.
(1)求橢圓C1的方程;
(2)求點Q的軌跡方程;
(3)當(dāng)A,B,Q三點不共線時,求△ABQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.直線$\left\{\begin{array}{l}{x=t-1}\\{y=2-t}\end{array}\right.$(t為參數(shù))與曲線$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù))的交點個數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}中,a1=-1,an+1=2an+3n-1(n∈N*),則其前n項和Sn=2n+2-4-$\frac{3{n}^{2}+7n}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)$f(x)=sin(ωx+\frac{π}{6})$,其中ω>0.若$f(x)≤f(\frac{π}{12})$對x∈R恒成立,則ω的最小值為( 。
A.2B.4C.10D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程是$\left\{\begin{array}{l}x=-1+cosθ\\ y=sinθ\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=2sinθ.
(Ⅰ) 求曲線C1與C2交點的平面直角坐標(biāo);
(Ⅱ) 點A,B分別在曲線C1,C2上,當(dāng)|AB|最大時,求△OAB的面積(O為坐標(biāo)原點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.對函數(shù)f(x)=$\frac{cosx+m}{cosx+2}$,若?a,b,c∈R,f(a),f(b),f(c)都為某個三角形的三邊長,則實數(shù)m的取值范圍是(  )
A.$(\;\frac{5}{4}\;,\;6\;)$B.$(\;\frac{5}{3}\;,\;6\;)$C.$(\;\frac{7}{5}\;,\;5\;)$D.$(\;\frac{5}{4}\;,\;5\;)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.圓心為(0,1)且與直線y=2相切的圓的方程為(  )
A.(x-1)2+y2=1B.(x+1)2+y2=1C.x2+(y-1)2=1D.x2+(y+1)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù) f( x)=x 3-bx 2+2cx的導(dǎo)函數(shù)的圖象關(guān)于直線 x=2對稱.
(1)求 b的值;
(2)若函數(shù) f( x)無極值,求 c的取值范圍;
(3)若 f( x)在 x=t處取得極小值,求此極小值為 g( t)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案