4.已知:數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=2an-2n(n∈N*
(1)證明數(shù)列{an+2}是等比數(shù)列.并求數(shù)列{an}的通項(xiàng)公式an;
(2)若數(shù)列{bn}滿足bn=log2(an+2),而Tn為數(shù)列{$\frac{_{n}}{{a}_{n}+2}$}的前n項(xiàng)和,求Tn

分析 (1)由已知數(shù)列遞推式可得an=2an-1+2,由此構(gòu)造等比數(shù)列{an+2},求其通項(xiàng)公式后可得數(shù)列{an}的通項(xiàng)公式;
(2)把數(shù)列{an}的通項(xiàng)公式代入bn=log2(an+2),進(jìn)一步得到數(shù)列{$\frac{_{n}}{{a}_{n}+2}$}的通項(xiàng)公式,再利用錯(cuò)位相減法求數(shù)列{$\frac{_{n}}{{a}_{n}+2}$}的前n項(xiàng)和Tn

解答 (1)由Sn=2an-2n,得
當(dāng)n≥2時(shí),Sn-1=2an-1-2(n-1),
兩式作差可得:an=2an-2an-1-2,即an=2an-1+2.
∴an+2=2(an-1+2).
則$\frac{{a}_{n}+2}{{a}_{n-1}+2}=2$.
當(dāng)n=1時(shí),S1=2a1-2,得a1=2.
∴數(shù)列{an+2}是以a1+2=4為首項(xiàng),以2為公比的等比數(shù)列,
∴${a}_{n}+2=4•{2}^{n-1}$,
則${a}_{n}={2}^{n+1}-2$;
(2)由bn=log2(an+2)=$lo{g}_{2}{2}^{n+1}=n+1$,得$\frac{_{n}}{{a}_{n}+2}$=$\frac{n+1}{{2}^{n+1}}$.
則${T}_{n}=\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}+…+\frac{n+1}{{2}^{n+1}}$  ①,
$\frac{1}{2}{T}_{n}=\frac{2}{{2}^{3}}+\frac{3}{{2}^{4}}+…+\frac{n}{{2}^{n+1}}+\frac{n+1}{{2}^{n+2}}$  ②,
①-②得
$\frac{1}{2}{T}_{n}=\frac{2}{{2}^{2}}+\frac{1}{{2}^{3}}+\frac{1}{{2}^{4}}+…+\frac{1}{{2}^{n+1}}+\frac{n+1}{{2}^{n+2}}$
=$\frac{1}{4}+\frac{\frac{1}{4}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}-\frac{n+1}{{2}^{n+2}}=\frac{1}{4}+\frac{1}{2}-\frac{1}{{2}^{n+1}}-\frac{n+1}{{2}^{n+2}}$=$\frac{3}{4}-\frac{n+3}{{2}^{n+2}}$.
∴${T}_{n}=\frac{3}{2}-\frac{n+3}{{2}^{n+1}}$.

點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,訓(xùn)練了錯(cuò)位相減法求數(shù)列的和,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知數(shù)列{bn}中,b1=4,且bn+1-2bn-4=0,則b8=(  )
A.28-4B.210-4C.212-4D.29-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$在某一個(gè)周期內(nèi)的最低點(diǎn)和最高點(diǎn)坐標(biāo)為$(-\frac{π}{12},-2),(\frac{5π}{12},2)$,則該函數(shù)的解析式為( 。
A.$f(x)=2sin(2x+\frac{π}{3})$B.$f(x)=2sin(2x-\frac{π}{3})$C.$f(x)=2sin(2x+\frac{π}{6})$D.$f(x)=2sin(2x-\frac{π}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.過(guò)圓x2+y2=4外一點(diǎn)P(4,2)作圓的兩條切線,切點(diǎn)為A,B,則△ABP的外接圓的方程是(x-2)2+(y-1)2=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在△ABC中,A、B、C所對(duì)的邊分別是a、b、c,且有bcosC+ccosB=2acosB.
(1)求B的大。
(2)若△ABC的面積是$\frac{3\sqrt{3}}{4}$,且a+c=5,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知f(x)=ax3+x2在x=1處的切線方程與直線y=x-2平行,則y=f(x)的解析式為f(x)=-$\frac{1}{3}$x3+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖1,矩形ABCD,AB=2BC=4,M,N,E分別為AD,BC,CD的中點(diǎn).現(xiàn)將△ADE沿AE折起,折起過(guò)程中,點(diǎn)D仍記作D,得到如圖2所示的四棱錐D-ABCE.
(1)證明:MN∥平面CDE;
(2)當(dāng)AD⊥BE時(shí),求直線BD與平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)y=f(x)是偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2-4x+3,則f(x)的單調(diào)增區(qū)間是[-2,0],[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知p:不等式ax2+2ax+1>0的解集為R;q:0<a<1.則p是q必要(充分,必要,充要)條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案