分析 (1)由已知數(shù)列遞推式可得an=2an-1+2,由此構(gòu)造等比數(shù)列{an+2},求其通項(xiàng)公式后可得數(shù)列{an}的通項(xiàng)公式;
(2)把數(shù)列{an}的通項(xiàng)公式代入bn=log2(an+2),進(jìn)一步得到數(shù)列{$\frac{_{n}}{{a}_{n}+2}$}的通項(xiàng)公式,再利用錯(cuò)位相減法求數(shù)列{$\frac{_{n}}{{a}_{n}+2}$}的前n項(xiàng)和Tn.
解答 (1)由Sn=2an-2n,得
當(dāng)n≥2時(shí),Sn-1=2an-1-2(n-1),
兩式作差可得:an=2an-2an-1-2,即an=2an-1+2.
∴an+2=2(an-1+2).
則$\frac{{a}_{n}+2}{{a}_{n-1}+2}=2$.
當(dāng)n=1時(shí),S1=2a1-2,得a1=2.
∴數(shù)列{an+2}是以a1+2=4為首項(xiàng),以2為公比的等比數(shù)列,
∴${a}_{n}+2=4•{2}^{n-1}$,
則${a}_{n}={2}^{n+1}-2$;
(2)由bn=log2(an+2)=$lo{g}_{2}{2}^{n+1}=n+1$,得$\frac{_{n}}{{a}_{n}+2}$=$\frac{n+1}{{2}^{n+1}}$.
則${T}_{n}=\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}+…+\frac{n+1}{{2}^{n+1}}$ ①,
$\frac{1}{2}{T}_{n}=\frac{2}{{2}^{3}}+\frac{3}{{2}^{4}}+…+\frac{n}{{2}^{n+1}}+\frac{n+1}{{2}^{n+2}}$ ②,
①-②得
$\frac{1}{2}{T}_{n}=\frac{2}{{2}^{2}}+\frac{1}{{2}^{3}}+\frac{1}{{2}^{4}}+…+\frac{1}{{2}^{n+1}}+\frac{n+1}{{2}^{n+2}}$
=$\frac{1}{4}+\frac{\frac{1}{4}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}-\frac{n+1}{{2}^{n+2}}=\frac{1}{4}+\frac{1}{2}-\frac{1}{{2}^{n+1}}-\frac{n+1}{{2}^{n+2}}$=$\frac{3}{4}-\frac{n+3}{{2}^{n+2}}$.
∴${T}_{n}=\frac{3}{2}-\frac{n+3}{{2}^{n+1}}$.
點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,訓(xùn)練了錯(cuò)位相減法求數(shù)列的和,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 28-4 | B. | 210-4 | C. | 212-4 | D. | 29-4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $f(x)=2sin(2x+\frac{π}{3})$ | B. | $f(x)=2sin(2x-\frac{π}{3})$ | C. | $f(x)=2sin(2x+\frac{π}{6})$ | D. | $f(x)=2sin(2x-\frac{π}{6})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com