A. | 如果兩個(gè)復(fù)數(shù)的積是實(shí)數(shù),那么這兩個(gè)復(fù)數(shù)互為共軛復(fù)數(shù) | |
B. | 用反證法證明命題“設(shè)a,b為實(shí)數(shù),則方程x2+ax+b=0至少有一個(gè)實(shí)根”時(shí),要做的假設(shè)是:方程x2+ax+b=0至多有一個(gè)實(shí)根 | |
C. | 在復(fù)平面中復(fù)數(shù)z滿足|z|=2的點(diǎn)的軌跡是以原點(diǎn)為圓心,以2為半徑的圓 | |
D. | 等軸雙曲線$\frac{x^2}{3}-\frac{y^2}{3}=1$上任意一點(diǎn)到兩焦點(diǎn)的距離之差=$2\sqrt{3}$ |
分析 A考查了共軛復(fù)數(shù)的概念;
B考查了反證法的假設(shè),要從結(jié)論的反面出發(fā);
C考查了復(fù)平面的應(yīng)用;
D考查了雙曲線的定義.
解答 解:A如果兩個(gè)復(fù)數(shù)的積是實(shí)數(shù),那么這兩個(gè)復(fù)數(shù)不一定為互為共軛復(fù)數(shù),比如2和3不是共軛復(fù)數(shù),故錯(cuò)誤;
B用反證法證明命題“設(shè)a,b為實(shí)數(shù),則方程x2+ax+b=0至少有一個(gè)實(shí)根”時(shí),要做的假設(shè)是:方程x2+ax+b=0沒(méi)有一個(gè)實(shí)根,故錯(cuò)誤;
C在復(fù)平面中復(fù)數(shù)z=a+bi滿足|z|=2的點(diǎn),可得a2+b2=4,故點(diǎn)的軌跡是以原點(diǎn)為圓心,以2為半徑的圓,故正確;
D等軸雙曲線$\frac{x^2}{3}-\frac{y^2}{3}=1$上任意一點(diǎn)到兩焦點(diǎn)的距離之差的絕對(duì)值=2$\sqrt{3}$,故錯(cuò)誤.
故選C.
點(diǎn)評(píng) 考查了共軛復(fù)數(shù)的概念和反證法的假設(shè),屬于基礎(chǔ)題型,應(yīng)熟練掌握.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | A=B | B. | A⊆B | C. | B⊆A | D. | A∩B=∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | α內(nèi)存在于a垂直的直線 | B. | α內(nèi)存在與a平行的直線 | ||
C. | α內(nèi)不存在與a垂直的直線 | D. | α內(nèi)不存在與a平行的直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=2x | B. | y=x2 | C. | y=x | D. | y=log2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com