13.已知數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的正整數(shù)n,都有Sn=$\frac{3}{2}$an+n-3成立.
(1)求證:存在實(shí)數(shù)λ使得數(shù)列{an+λ}為等比數(shù)列;
(2)求數(shù)列{nan}的前n項(xiàng)和Tn

分析 (1)利用遞推關(guān)系與等比數(shù)列的定義通項(xiàng)公式即可得出.
(2)利用“錯(cuò)位相減法”、等差數(shù)列與等比數(shù)列的求和公式即可得出.

解答 (1)證明:∵Sn=$\frac{3}{2}$an+n-3,∴a1=S1=$\frac{3}{2}{a}_{1}$+1-3,解得a1=4.
n≥2時(shí),an=Sn-Sn-1=$\frac{3}{2}$an+n-3-$(\frac{3}{2}{a}_{n-1}+n-1-3)$,化為an=3an-1+2,
變形為:an+1=3(an-1+1),
因此取λ=1,則數(shù)列{an+1}為等比數(shù)列,首項(xiàng)為5,公比為3.
(2)由(1)可得:an+1=5×3n-1,可得an=5×3n-1-1,
∴nan=5n×3n-1-n.
數(shù)列{nan}的前n項(xiàng)和Tn=5(1+2×3+3×32+…+n×3n-1)-$\frac{n(n+1)}{2}$.
設(shè)An=1+2×3+3×32+…+n×3n-1,
∴3An=3+2×32+…+(n-1)×3n-1+n×3n
-2An=1+3+32+…+3n-1-n×3n=$\frac{{3}^{n}-1}{3-1}$-n×3n,
∴An=$\frac{(2n-1)×{3}^{n}+1}{4}$.
∴Tn=$\frac{5(2n-1)×{3}^{n}+5}{4}$-$\frac{n(n+1)}{2}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式、“錯(cuò)位相減法”、遞推公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.(3x+1)n展開式中,所有項(xiàng)的系數(shù)和比二項(xiàng)式系數(shù)和多240,則n=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.集合A={-2,-1,3,4},B={-1,2,3},則A∪B={-2,-1,2,3,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(x)=2sin2x+$\sqrt{3}$sin2($\frac{π}{2}$-x).
(1)求f($\frac{π}{6}$)的值;
(2)求函數(shù)f(x)的最小正周期及圖象的對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知直線ax+(2-a)y+4=0與x+ay-2=0平行,則實(shí)數(shù)a的值為( 。
A.1B.-2C.1或-2D.0或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.目前,中國(guó)的青少年視力水平下降已引起全社會(huì)的關(guān)注,為了調(diào)查了解某中學(xué)高三年級(jí)1 500名學(xué)生的視力情況,從中抽測(cè)了一部分學(xué)生的視力,
分  組頻  數(shù)頻  率
3.95~4.2520.04
60.12
4.55~4.8523
4.85~5.15
5.15~5.4510.02
合計(jì)1.00
整理數(shù)據(jù)后,分析數(shù)據(jù)如下:
(1)填寫頻率分布表中未完成的部分;
(2)若視力為4.9,5.0,5.1均屬正常,不需矯正,試估計(jì)該校畢業(yè)年級(jí)學(xué)生視力正常的人數(shù)約為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=x3-3x及曲線y=f(x)上一點(diǎn)P(1,-2),
(I) 求與y=f(x)相切且以P為切點(diǎn)的直線方程;
(Ⅱ)求過(guò)點(diǎn)P并與y=f(x)相切且切點(diǎn)異于P點(diǎn)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知f(x)是定義在區(qū)間[-1,1]上的奇函數(shù),且f(-1)=1,若m,n∈[-1,1],m+n≠0時(shí),有$\frac{f(m)+f(n)}{m+n}$<0.
(Ⅰ)證明:f(x)在區(qū)間[-1,1]上是單調(diào)減函數(shù);
(Ⅱ)解不等式f(x+$\frac{1}{2}}$)<f(${\frac{1}{x-1}}$);
(Ⅲ)若f(x)≤t2-mt-1對(duì)所有x∈[-1,1],m∈[0,1]恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)y=sin(2x+φ)(0<φ<π)的圖象向右平移$\frac{π}{4}$個(gè)單位后與y=sin2x的圖象重合,則φ=$\frac{π}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案