已知以點C (t∈R,t≠0)為圓心的圓與x軸交于點O,A,與y軸交于點O,B,其中O為原點.
(1)求證:△AOB的面積為定值;
(2)設直線2x+y-4=0與圓C交于點M,N,若|OM|=|ON|,求圓C的方程;
(3)在(2)的條件下,設P,Q分別是直線l:x+y+2=0和圓C上的動點,求|PB|+|PQ|的最小值及此時點P的坐標..
科目:高中數(shù)學 來源: 題型:解答題
已知圓C:,直線L:.
(1)求證:對直線L與圓C總有兩個不同交點;
(2)設L與圓C交于不同兩點A、B,求弦AB的中點M的軌跡方程;
(3)若定點P(1,1)分弦AB所得向量滿足,求此時直線L的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,曲線y=x2-2x-3與坐標軸的交點都在圓C上.
(1)求圓C的方程;
(2)若直線x+y+a=0與圓C交于A,B兩點,且AB=2,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓C1:x2+y2-2y=0,圓C2:x2+(y+1)2=4的圓心分別為C1,C2,P為一個動點,且直線PC1,PC2的斜率之積為-.
(1)求動點P的軌跡M的方程;
(2)是否存在過點A(2,0)的直線l與軌跡M交于不同的兩點C,D,使得|C1C|=|C1D|?若存在,求直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,曲線y=x2-6x+1與坐標軸的交點都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線x-y+a=0交于A,B兩點,且OA⊥OB,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓A過點,且與圓B:關于直線對稱.
(1)求圓A的方程;
(2)若HE、HF是圓A的兩條切線,E、F是切點,求的最小值。
(3)過平面上一點向圓A和圓B各引一條切線,切點分別為C、D,設,求證:平面上存在一定點M使得Q到M的距離為定值,并求出該定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com