分析 設|BF1|=m,則|AF2|=2m,由雙曲線的定義可得|AF1|=2a+2m,|BF2|=m+2a,|EF2|=m+2a-2$\sqrt{2}$,再由內(nèi)切圓的性質(zhì),求得a=$\sqrt{2}$,結(jié)合離心率公式,可得所求.
解答 解:設|BF1|=m,則|AF2|=2m,
由雙曲線的定義有|AF1|=|AF2|+2a=2a+2m,
|BF2|=m+2a,|EF2|=m+2a-2$\sqrt{2}$,
即有2a+2m=2m-(m+2a-2$\sqrt{2}$)+2$\sqrt{2}$+m,
解得a=$\sqrt{2}$,
由c=2,可得e=$\frac{c}{a}$=$\sqrt{2}$.
故答案為:$\sqrt{2}$.
點評 本題考查雙曲線的定義、方程和性質(zhì),考查內(nèi)切圓的性質(zhì),考查離心率的求法,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 150° | B. | 135° | C. | 120° | D. | 30° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 29 | B. | 49 | C. | 50 | D. | 58 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ②③ | B. | ②④ | C. | ①②④ | D. | ①③④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | -$\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com