A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{6}$ |
分析 求得雙曲線的漸近線方程,由條件可得$\sqrt{2e-1}$=$\frac{a}$,由a,b,c的關系和離心率公式,計算即可得到所求值.
解答 解:由題意可得e=$\frac{c}{a}$,
雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的漸近線方程為y=±$\frac{a}$x,
由題意可得$\sqrt{2e-1}$=$\frac{a}$,
由b=$\sqrt{{c}^{2}-{a}^{2}}$,可得$\sqrt{2e-1}$=$\sqrt{\frac{{c}^{2}-{a}^{2}}{{a}^{2}}}$=$\sqrt{{e}^{2}-1}$,
即為e2=2e,解得e=2(0舍去).
故選:C.
點評 本題考查雙曲線的離心率的求法,注意運用雙曲線方程和漸近線方程的關系,考查運算能力,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 偶函數(shù) | B. | 奇函數(shù) | ||
C. | 既是偶函數(shù),也是奇函數(shù) | D. | 既非偶函數(shù),也非奇函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2{a}_{1}+3{a}_{2}}{5}$ | B. | $\frac{3{a}_{1}+2{a}_{2}}{5}$ | C. | a1+a2 | D. | $\frac{{a}_{1}+{a}_{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(1,\frac{{\sqrt{10}}}{2}]$ | B. | $(1,\frac{{\sqrt{37}}}{5}]$ | C. | $[\frac{{\sqrt{37}}}{5},\frac{{\sqrt{10}}}{2}]$ | D. | $[\frac{{\sqrt{10}}}{2},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com