【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為:為參數(shù),已知直線,直線以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系.

1)求曲線C以及直線,的極坐標(biāo)方程;

2)若直線與曲線C分別交于O、A兩點(diǎn),直線與曲線C分別交于O、B兩點(diǎn),求的面積.

【答案】1,,.(2

【解析】

1)根據(jù)題意消參求出曲線C的直線坐標(biāo)方程,然后利用,,即可求解.

2)把代入曲線C的極坐標(biāo)方程,得出;同理,把代入曲線C的極坐標(biāo)方程,得出,再利用三角形的面積公式即可求解.

1)依題意,由曲線C的參數(shù)方程為參數(shù))

消參得,故曲線C的普通方程為

,,,得

曲線C的極坐標(biāo)方程為

的極坐標(biāo)方程為,

2)把代入,得,所以,

代入,得,所以,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來隨著我國在教育科研上的投入不斷加大,科學(xué)技術(shù)得到迅猛發(fā)展,國內(nèi)企業(yè)的國際競(jìng)爭(zhēng)力得到大幅提升.伴隨著國內(nèi)市場(chǎng)增速放緩,國內(nèi)有實(shí)力企業(yè)紛紛進(jìn)行海外布局,第二輪企業(yè)出海潮到來.如在智能手機(jī)行業(yè),國產(chǎn)品牌已在趕超國外巨頭,某品牌手機(jī)公司一直默默拓展海外市場(chǎng),在海外共設(shè)30多個(gè)分支機(jī)構(gòu),需要國內(nèi)公司外派大量80后、90后中青年員工.該企業(yè)為了解這兩個(gè)年齡層員工是否愿意被外派工作的態(tài)度,按分層抽樣的方式從80后和90后的員工中隨機(jī)調(diào)查了100位,得到數(shù)據(jù)如下表:

愿意被外派

不愿意被外派

合計(jì)

80

20

20

40

90

40

20

60

合計(jì)

60

40

100

1)根據(jù)調(diào)查的數(shù)據(jù),是否有99%的把握認(rèn)為“是否愿意被外派與年齡有關(guān)”,并說明理由;

2)該公司舉行參觀駐海外分支機(jī)構(gòu)的交流體驗(yàn)活動(dòng),擬安排6名參與調(diào)查的80后、90后員工參加.80后員工中有愿意被外派的3人和不愿意被外派的3人報(bào)名參加,從中隨機(jī)選出3人,記選到愿意被外派的人數(shù)為;90后員工中有愿意被外派的4人和不愿意被外派的2人報(bào)名參加,從中隨機(jī)選出3人,記選到愿意被外派的人數(shù)為,求的概率.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

(參考公式:,其中).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面,,,中點(diǎn),中點(diǎn),是線段上一動(dòng)點(diǎn).

1)當(dāng)中點(diǎn)時(shí),求證:平面平面;

2)當(dāng)∥平面時(shí),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)A的極坐標(biāo)為,直線l的極坐標(biāo)方程為

1)求直線l的直角坐標(biāo)方程與曲線C的普通方程;

2)若B是曲線C上的動(dòng)點(diǎn),G為線段的中點(diǎn).求點(diǎn)G到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的離心率為,且經(jīng)過點(diǎn).

(1)求橢圓的方程;

(2)過點(diǎn)作直線與橢圓交于不同的兩點(diǎn),,試問在軸上是否存在定點(diǎn)使得直線與直線恰關(guān)于軸對(duì)稱?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是拋物線的焦點(diǎn),點(diǎn)軸上,為坐標(biāo)原點(diǎn),且滿足,經(jīng)過點(diǎn)且垂直于軸的直線與拋物線交于、兩點(diǎn),且.

1)求拋物線的方程;

2)直線與拋物線交于、兩點(diǎn),若,求點(diǎn)到直線的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,,

1)證明:平面平面

2)若為側(cè)棱的中點(diǎn),求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線,曲線為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系.

1)求,的極坐標(biāo)方程;

2)射線l的極坐標(biāo)方程為,若l分別與,交于異于極點(diǎn)的,兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓,圓心,點(diǎn)E在直線上,點(diǎn)P滿足,,點(diǎn)P的軌跡為曲線M

1)求曲線M的方程.

2)過點(diǎn)N的直線l分別交M于點(diǎn)A、B,交圓N于點(diǎn)C、D(自上而下),若、、成等差數(shù)列,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案