【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)A的極坐標(biāo)為,直線l的極坐標(biāo)方程為
(1)求直線l的直角坐標(biāo)方程與曲線C的普通方程;
(2)若B是曲線C上的動點(diǎn),G為線段的中點(diǎn).求點(diǎn)G到直線l的距離的最大值.
【答案】(1):,C:;(2)
【解析】
(1)利用消參得到曲線C的普通方程,以及利用兩角和的正弦公式展開,利用求直線的直角坐標(biāo)方程;
(2)利用參數(shù)方程設(shè),則,利用點(diǎn)到直線的距離,轉(zhuǎn)化為三角函數(shù)求最值.
(1)∵直線的極坐標(biāo)方程為,即.
由,,可得直線的直角坐標(biāo)方程為.
將曲線C的參數(shù)方程消去參數(shù),得曲線C的普通方程為.
(2)設(shè).
點(diǎn)A的極坐標(biāo)化為直角坐標(biāo)為
則.
∴點(diǎn)G到直線的距離.
當(dāng)時(shí),等號成立點(diǎn).
∴點(diǎn)G到直線的距離的最大值為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】科學(xué)家在研究物體的熱輻射能力時(shí)定義了一個(gè)理想模型叫“黑體”,即一種能完全吸收照在其表面的電磁波(光)的物體.然后,黑體根據(jù)其本身特性再向周邊輻射電磁波,科學(xué)研究發(fā)現(xiàn)單位面積的黑體向空間輻射的電磁波的功率與該黑體的絕對溫度的次方成正比,即,為玻爾茲曼常數(shù).而我們在做實(shí)驗(yàn)數(shù)據(jù)處理的過程中,往往不用基礎(chǔ)變量作為橫縱坐標(biāo),以本實(shí)驗(yàn)結(jié)果為例,為縱坐標(biāo),以為橫坐標(biāo),則能夠近似得到______(曲線形狀),那么如果繼續(xù)研究該實(shí)驗(yàn),若實(shí)驗(yàn)結(jié)果的曲線如圖所示,試寫出其可能的橫縱坐標(biāo)的變量形式______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題共12分)
已知函數(shù), (為自然對數(shù)的底數(shù)).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求經(jīng)過橢圓右焦點(diǎn)且與直線垂直的直線的極坐標(biāo)方程;
(2)若為橢圓上任意-點(diǎn),當(dāng)點(diǎn)到直線距離最小時(shí),求點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求經(jīng)過橢圓右焦點(diǎn)且與直線垂直的直線的極坐標(biāo)方程;
(2)若為橢圓上任意-點(diǎn),當(dāng)點(diǎn)到直線距離最小時(shí),求點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】冠狀病毒是一個(gè)大型病毒家族,已知可引起感冒以及中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重疾病.而今年出現(xiàn)在湖北武漢的新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀發(fā)熱咳嗽氣促和呼吸困難等.在較嚴(yán)重病例中,感染可導(dǎo)致肺炎嚴(yán)重急性呼吸綜合征腎衰竭,甚至死亡.某醫(yī)院為篩查冠狀病毒,需要檢驗(yàn)血液是否為陽性,現(xiàn)有份血液樣本,有以下兩種檢驗(yàn)方式:
方式一:逐份檢驗(yàn),則需要檢驗(yàn)n次.
方式二:混合檢驗(yàn),將其中且k≥2)份血液樣本分別取樣混合在一起檢驗(yàn).若檢驗(yàn)結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為k+1.
假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽性還是陰性都是獨(dú)立的,且每份樣本是陽性結(jié)果的概率為p(0<p<1).現(xiàn)取其中且k≥2)份血液樣本,記采用逐份檢驗(yàn),方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為.
(1)若,試求p關(guān)于k的函數(shù)關(guān)系式p=f(k).
(2)若p與干擾素計(jì)量相關(guān),其中2)是不同的正實(shí)數(shù),滿足x1=1且.
(i)求證:數(shù)列為等比數(shù)列;
(ii)當(dāng)時(shí)采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)的期望值更少,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為:(為參數(shù),已知直線,直線以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線C以及直線,的極坐標(biāo)方程;
(2)若直線與曲線C分別交于O、A兩點(diǎn),直線與曲線C分別交于O、B兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)①求證:當(dāng)任意取值時(shí),的圖像始終經(jīng)過一個(gè)定點(diǎn),并求出該定點(diǎn)坐標(biāo);
②若的圖像在該定點(diǎn)處取得極值,求的值;
(2)求證:當(dāng)時(shí),函數(shù)有唯一零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)存在兩個(gè)極值點(diǎn),,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com