【題目】在一次漢馬(武漢馬拉松比賽的簡(jiǎn)稱)全程比賽中,50名參賽選手(24名男選手和26名女選手)的成績(jī)(單位:分鐘)分別為數(shù)據(jù) (成績(jī)不為0).

24名男選手成績(jī)的莖葉圖如圖⑴所示,若將男選手成績(jī)由好到差編為124號(hào),再用系統(tǒng)抽樣方法從中抽取6人,求其中成績(jī)?cè)趨^(qū)間上的選手人數(shù);

Ⅱ)如圖⑵所示的程序用來對(duì)這50名選手的成績(jī)進(jìn)行統(tǒng)計(jì).為了便于區(qū)別性別,輸入時(shí),男選手的成績(jī)數(shù)據(jù)用正數(shù),女選手的成績(jī)數(shù)據(jù)用其相反數(shù)(負(fù)數(shù)),請(qǐng)完成圖⑵中空白的判斷框①處的填寫,并說明輸出數(shù)值的統(tǒng)計(jì)意義.

【答案】4;(50.

【解析】試題分析:將男選手成績(jī)由好到差編為1~24號(hào),再用系統(tǒng)抽樣方法從中抽取6人,則男選手分為段,每段抽取1人,則其中成績(jī)?cè)趨^(qū)間上的恰有4段,每段1人,可得成績(jī)?cè)趨^(qū)間上的選手人數(shù)為4男選手的成績(jī)數(shù)據(jù)用正數(shù),女選手的成績(jī)數(shù)據(jù)用其相反數(shù)(負(fù)數(shù)),所以可得條件①處填寫,M表示對(duì)男選手的成績(jī)進(jìn)行累加,W表示對(duì)女選手的成績(jī)的相反數(shù)進(jìn)行累加,所以表示50位選手的總成績(jī), 的統(tǒng)計(jì)意義:50名選手的平均成績(jī). 所以輸出數(shù)值的統(tǒng)計(jì)意義:24名男選手的平均成績(jī) .

試題解析:

依題意,男選手分為段,每段抽取1人,

其中成績(jī)?cè)趨^(qū)間上的恰有4段,每段1人,

成績(jī)?cè)趨^(qū)間上的選手人數(shù)為4.

處填寫

表示對(duì)男選手的成績(jī)進(jìn)行累加,

所以輸出數(shù)值的統(tǒng)計(jì)意義:24名男選手的平均成績(jī) , 表示對(duì)男選手的成績(jī)進(jìn)行累加, 表示對(duì)女選手的成績(jī)的相反數(shù)進(jìn)行累加,所以表示50位選手的總成績(jī),

輸出數(shù)值的統(tǒng)計(jì)意義:50名選手的平均成績(jī).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)用五點(diǎn)法畫出它在一個(gè)周期內(nèi)的閉區(qū)間上的圖象;

(2)指出的周期、振幅、初相、對(duì)稱軸;

(3)說明此函數(shù)圖象可由的圖象經(jīng)怎樣的變換得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中有a個(gè)黑球和b個(gè)白球,隨機(jī)地每次從中取出一球,每次取后不放回,記事件A為“直到第k次才取到黑球”,其中1≤k≤b;事件B為“第7次取出的球恰好是黑球”,其中1≤k≤b。

(Ⅰ)若a=5,b=3,k=2,求事件A發(fā)生的概率;

(Ⅱ)判斷事件B發(fā)生的概率是否隨k取值的變化而變化?并說明理由;

(Ⅲ)比較a=5,b=9時(shí)事件A發(fā)生的概率與a=5,b=10時(shí)事件A發(fā)生的概率的大小,并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)、是兩條不同的直線, , 是三個(gè)不同的平面,給出下列四個(gè)命題:

①若, ,則 ②若 , ,則

③若, ,則 ④若 ,則

其中正確命題的序號(hào)是( ).

A. ①和② B. ②和③ C. ③和④ D. ①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 為等邊三角形,平面平面, , , , , 的中點(diǎn)

)求證:

)求二面角的余弦值

平面,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心為,直線.

(1)求圓心的軌跡方程;

(2)若,求直線被圓所截得弦長(zhǎng)的最大值;

(3)若直線是圓心下方的切線,當(dāng)上變化時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線過點(diǎn)(3,-2)且與橢圓4x2+9y2=36有相同的焦點(diǎn).

(I)求雙曲線的標(biāo)準(zhǔn)方程.

(II)若點(diǎn)M在雙曲線上, 是雙曲線的左、右焦點(diǎn),且|MF1|+|MF2|=試判斷的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018河南南陽市一中上學(xué)期第三次月考已知點(diǎn)為坐標(biāo)原點(diǎn), 是橢圓上的兩個(gè)動(dòng)點(diǎn),滿足直線與直線關(guān)于直線對(duì)稱.

I)證明直線的斜率為定值,并求出這個(gè)定值;

II)求的面積最大時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足:a1=,a2=,且a1a2+a2a3+…+anan+1=na1an+1對(duì)任何的正整數(shù)n都成立,則的值為( 。

A. 5032 B. 5044 C. 5048 D. 5050

查看答案和解析>>

同步練習(xí)冊(cè)答案