(本題滿(mǎn)分12分)生物體死亡后,它機(jī)體內(nèi)原有的碳14會(huì)按確定的規(guī)律衰減,大約每經(jīng)過(guò)5730年衰減為原來(lái)的一半,這個(gè)時(shí)間稱(chēng)為“半衰期”.
(Ⅰ)設(shè)生物體死亡時(shí)體內(nèi)每克組織中的碳14的含量為1,根據(jù)上述規(guī)律,寫(xiě)出生物體內(nèi)碳14的含量與死亡年數(shù)之間的函數(shù)關(guān)系式;
(Ⅱ)湖南長(zhǎng)沙馬王堆漢墓女尸出土?xí)r碳14的殘余量約占原始含量的76.7℅,試推算馬王堆漢墓的年代.(精確到個(gè)位;輔助數(shù)據(jù):

(Ⅰ)(Ⅱ)馬王堆漢墓大約是近2200年前的遺址.

解析試題分析:(Ⅰ)依題意,1個(gè)5730年后 , ;
2個(gè)5730年后 , ; 
年后即個(gè)5730年后,  
(Ⅱ)由已知有    
于是,

所以
故馬王堆漢墓大約是近2200年前的遺址. 
考點(diǎn):函數(shù)模型的選擇和應(yīng)用
點(diǎn)評(píng):本題考查理解題意的能力,先求出經(jīng)過(guò)幾次半衰期,然后求出t,即可找到答案,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)滿(mǎn)足對(duì)一切都有,且,當(dāng)時(shí)有.
(1)求的值;
(2)判斷并證明函數(shù)上的單調(diào)性;
(3)解不等式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)在點(diǎn)(1,f(1))處的切線(xiàn)方程為y = 2.
(I)求f(x)的解析式;
(II)設(shè)函數(shù)若對(duì)任意的,總存唯一實(shí)數(shù),使得,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分14分)
已知函數(shù),,函數(shù)的圖象在點(diǎn)處的切線(xiàn)平行于軸.
(1)確定的關(guān)系;
(2)試討論函數(shù)的單調(diào)性;
(3)證明:對(duì)任意,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)=,數(shù)列滿(mǎn)足,。(12分)
(1)求數(shù)列的通項(xiàng)公式;
(2)令-+-+…+-
(3)令=,,+++┅,若<對(duì)一切都成立,求最小的正整數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
設(shè)函數(shù),曲線(xiàn)在點(diǎn)處的切線(xiàn)方程
(1)求的解析式,并判斷函數(shù)的圖像是否為中心對(duì)稱(chēng)圖形?若是,請(qǐng)求其對(duì)稱(chēng)中心;否則說(shuō)明理由。
(2)證明:曲線(xiàn)上任一點(diǎn)的切線(xiàn)與直線(xiàn)和直線(xiàn)所圍三角形的面積為定值,并求出此定值.
(3) 將函數(shù)的圖象向左平移一個(gè)單位后與拋物線(xiàn)為非0常數(shù))的圖象有幾個(gè)交點(diǎn)?(說(shuō)明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),,已知為函數(shù)的極值點(diǎn)
(1)求函數(shù)上的單調(diào)區(qū)間,并說(shuō)明理由.
(2)若曲線(xiàn)處的切線(xiàn)斜率為-4,且方程有兩個(gè)不相等的負(fù)實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分18分) 本題共有3個(gè)小題,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分6分,第3小題滿(mǎn)分8分.
我們把定義在上,且滿(mǎn)足(其中常數(shù)滿(mǎn)足)的函數(shù)叫做似周期函數(shù).
(1)若某個(gè)似周期函數(shù)滿(mǎn)足且圖像關(guān)于直線(xiàn)對(duì)稱(chēng).求證:函數(shù)是偶函數(shù);
(2)當(dāng)時(shí),某個(gè)似周期函數(shù)在時(shí)的解析式為,求函數(shù)的解析式;
(3)對(duì)于確定的時(shí),,試研究似周期函數(shù)函數(shù)在區(qū)間上是否可能是單調(diào)函數(shù)?若可能,求出的取值范圍;若不可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
已知函數(shù)其中
(1)、若的單調(diào)增區(qū)間是(0.1),求m的值
(2)、當(dāng)時(shí),函數(shù)的圖像上任意一點(diǎn)的切線(xiàn)斜率恒大于3m,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案