已知橢圓的離心率為,左焦點為
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與曲線交于不同的、兩點,且線段的中點在圓 上,求的值.
(Ⅰ);(Ⅱ).

試題分析:(Ⅰ)利用離心率和直線與焦點坐標得到兩個等量關系,確定橢圓方程;(Ⅱ)利用直線與圓聯(lián)立,借助韋達定理和中點坐標M在圓上建立等量關系.
試題解析:(Ⅰ)由題意得,                               2分
解得                                     4分
所以橢圓C的方程為:                              6分
(Ⅱ)設點、的坐標分別為,,線段的中點為
,消去y得                8分
,∴                          9分
,                          10分
∵點 在圓上,∴,即  13分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓:)上任意一點到兩焦點距離之和為,離心率為,左、右焦點分別為,點是右準線上任意一點,過作直 線的垂線交橢圓于點.

(1)求橢圓的標準方程;
(2)證明:直線與直線的斜率之積是定值;
(3)點的縱坐標為3,過作動直線與橢圓交于兩個不同點,在線段上取點,滿足,試證明點恒在一定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的焦點以及橢圓的上、下焦點及左、右頂點均在圓上.
(1)求拋物線和橢圓的標準方程;
(2)過點的直線交拋物線兩不同點,交軸于點,已知,則
是否為定值?若是,求出其值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,短軸的一個端點到右焦點的距離為,直線交橢圓于不同的兩點
(1)求橢圓的方程;
(2)若坐標原點到直線的距離為,求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過點作一直線與橢圓相交于A、B兩點,若點恰好為弦的中點,則所在直線的方程為        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是雙曲線的兩個頂點,點是雙曲線上異于的一點,連接為坐標原點)交橢圓于點,如果設直線的斜率分別為,且,假設,則的值為(  )
A.1B.C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線的離心率為,頂點與橢圓的焦點相同,那么雙曲線的焦點坐標為_____;漸近線方程為_________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

秒“嫦娥二號”探月衛(wèi)星由長征三號丙運載火箭送入近地點高度約公里、遠地點高度約萬公里的直接奔月橢圓(地球球心為一個焦點)軌道Ⅰ飛行。當衛(wèi)星到達月球附近的特定位置時,實施近月制動及軌道調(diào)整,衛(wèi)星變軌進入遠月面公里、近月面公里(月球球心為一個焦點)的橢圓軌道Ⅱ繞月飛行,之后衛(wèi)星再次擇機變軌進入以為圓心、距月面公里的圓形軌道Ⅲ繞月飛行,并開展相關技術試驗和科學探測。已知地球半徑約為公里,月球半徑約為公里。
(Ⅰ)比較橢圓軌道Ⅰ與橢圓軌道Ⅱ的離心率的大。
(Ⅱ)以為右焦點,求橢圓軌道Ⅱ的標準方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設橢圓C:的左、右焦點分別為、,P是C上的點,,
=,則C的離心率為(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案