【題目】如圖,已知AB⊥平面BCD,BC⊥CD,AD與平面BCD所成的角為30°,且AB=BC=2;
(1)求三棱錐A﹣BCD的體積;
(2)設M為BD的中點,求異面直線AD與CM所成角的大小(結(jié)果用反三角函數(shù)值表示).

【答案】
(1)解:如圖,因為AB⊥平面BCD,

所以AB⊥CD,又BC⊥CD,所以CD⊥平面ABC,

因為AB⊥平面BCD,AD與平面BCD所成的角為30°,故∠ADB=30°,

由AB=BC=2,得AD=4,AC=2

∴BD= =2 ,CD= =2

則VABCD= = =

=


(2)解:以C為原點,CD為x軸,CB為y軸,過C作平面BCD的垂線為z軸,

建立空間直角坐標系,

則A(0,2,2),D(2 ,0,0),C(0,0,0),B(0,2,0),M( ),

=(2 ,﹣2,﹣2), =( ),

設異面直線AD與CM所成角為θ,

則cosθ= = =

θ=arccos

∴異面直線AD與CM所成角的大小為arccos


【解析】(1)由AB⊥平面BCD,得CD⊥平面ABC,由此能求出三棱錐A﹣BCD的體積.(2)以C為原點,CD為x軸,CB為y軸,過C作平面BCD的垂線為z軸,建立空間直角坐標系,由此能求出異面直線AD與CM所成角的大小.
【考點精析】認真審題,首先需要了解異面直線及其所成的角(異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關系).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為 ,四個頂點構成的菱形的面積是4,圓M:(x+1)2+y2=r2(0<r<1).過橢圓C的上頂點A作圓M的兩條切線分別與橢圓C相交于B,D兩點(不同于點A),直線AB,AD的斜率分別為k1 , k2
(1)求橢圓C的方程;
(2)當r變化時,①求k1k2的值;②試問直線BD是否過某個定點?若是,求出該定點;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),如果存在實數(shù)使得,那么稱的線性函數(shù).

1)下面給出兩組函數(shù),判斷是否分別為的線性函數(shù)?并說明理由;

第一組:

第二組:

2)設,線性函數(shù)為.若等式上有解,求實數(shù)的取值范圍;

3)設,取.線性函數(shù)圖像的最低點為.若對于任意正實數(shù).試問是否存在最大的常數(shù),使恒成立?如果存在,求出這個的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:
①存在實數(shù)α使
②直線 是函數(shù)y=sinx圖象的一條對稱軸.
③y=cos(cosx)(x∈R)的值域是[cos1,1].
④若α,β都是第一象限角,且α>β,則tanα>tanβ.
其中正確命題的題號為( )
A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且8sin2
(1)求角A的大。
(2)若a= ,b+c=3,求b和c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)yfx)是偶函數(shù),當x0時,;當x[3,﹣1]時,記fx)的最大值為m,最小值為n,則mn________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= x2﹣ax+(3﹣a)lnx,a∈R.
(1)若曲線y=f(x)在點(1,f(1))處的切線與直線2x﹣y+1=0垂直,求a的值;
(2)設f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求證:f(x1)+f(x2)>﹣5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在我國古代數(shù)學名著《九章算術》中將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱之為塹堵,如圖,在塹堵ABC﹣A1B1C1中,AB=BC,AA1>AB,塹堵的頂點C1到直線A1C的距離為m,C1到平面A1BC的距離為n,則 的取值范圍是(
A.(1,
B.( ,
C.( ,
D.( ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐P﹣ABC的各頂點都在同一球的面上,且PA⊥平面ABC,若球O的體積為 (球的體積公式為 R3 , 其中R為球的半徑),AB=2,AC=1,∠BAC=60°,則三棱錐P﹣ABC的體積為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案