【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為為參數(shù)),直線與曲線分別交于,兩點(diǎn).

(1)寫(xiě)出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若點(diǎn)的極坐標(biāo)為,,求的值.

【答案】(1) 曲線的直角坐標(biāo)方程為即,直線的普通方程為;(2).

【解析】

(1)由,得,由此可求曲線的直角坐標(biāo)方程,消去參數(shù)t可得直線的普通方程;

(2)將直線的參數(shù)方程代入并化簡(jiǎn)、整理,

. 因?yàn)橹本與曲線交于,兩點(diǎn).所以,解得. 因?yàn)辄c(diǎn)的直角坐標(biāo)為,在直線上,所以即可求出的值.

(1)由,得,

所以曲線的直角坐標(biāo)方程為,

,

直線的普通方程為.

(2)將直線的參數(shù)方程代入并化簡(jiǎn)、整理,

.

因?yàn)橹本與曲線交于,兩點(diǎn)。

所以,解得.

由根與系數(shù)的關(guān)系,得,.

因?yàn)辄c(diǎn)的直角坐標(biāo)為,在直線上.

所以,

解得,此時(shí)滿足.且,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,頂點(diǎn)在底面上的射影在棱上,,,的中點(diǎn)。

(Ⅰ)求證:

(Ⅱ)求二面角的余弦值;

(Ⅲ)已知是平面內(nèi)一點(diǎn),點(diǎn)中點(diǎn),且平面,求線段的長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓Ox軸于點(diǎn)F1,F2,交y軸于點(diǎn)B1,B2.以B1,B2為頂點(diǎn),F1F2分別為左、右焦點(diǎn)的橢圓E,恰好經(jīng)過(guò)點(diǎn)

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)設(shè)經(jīng)過(guò)點(diǎn)(﹣2,0)的直線l與橢圓E交于M,N兩點(diǎn),求△F2MN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線Cy2=4x的焦點(diǎn)為F,過(guò)點(diǎn)F且斜率為1的直線與拋物線C交于AB兩點(diǎn),若在以線段AB為直徑的圓上存在兩點(diǎn)M、N,在直線x+y+a=0上存在一點(diǎn)Q,使得MQN=90°,則實(shí)數(shù)a的取值范圍為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠對(duì)一批新產(chǎn)品的長(zhǎng)度(單位:)進(jìn)行檢測(cè),如下圖是檢測(cè)結(jié)果的頻率分布直方圖,據(jù)此估計(jì)這批產(chǎn)品的中位數(shù)與平均數(shù)分別為( )

A.20,22.5B.22.5,25C.22.5,22.75D.22.75,22.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

(1)寫(xiě)出直線的普通方程及曲線的直角坐標(biāo)方程;

(2)已知點(diǎn),點(diǎn),直線過(guò)點(diǎn)且曲線相交于,兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店為了更好地規(guī)劃某種商品進(jìn)貨的量,該商店從某一年的銷售數(shù)據(jù)中,隨機(jī)抽取了組數(shù)據(jù)作為研究對(duì)象,如下表所示((噸)為該商品進(jìn)貨量,(天)為銷售天數(shù)):

2

3

4

5

6

8

9

11

1

2

3

3

4

5

6

8

(Ⅰ)根據(jù)上表提供的數(shù)據(jù),求出關(guān)于的線性回歸方程;

(Ⅱ)在該商品進(jìn)貨量(噸)不超過(guò)(噸)的前提下任取兩個(gè)值,求該商品進(jìn)貨量(噸)恰有一個(gè)值不超過(guò)(噸)的概率.

參考公式和數(shù)據(jù):,.,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓1ab0)的離心率為,以橢圓的右頂點(diǎn)與下頂點(diǎn)為直徑端點(diǎn)的圓的面積為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知點(diǎn),動(dòng)直線與橢圓交于軸同一側(cè)的兩點(diǎn),且滿足,試問(wèn)直線是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出此定點(diǎn)坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著移動(dòng)互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機(jī)APP軟件層出不窮.現(xiàn)從使用AB兩款訂餐軟件的商家中分別隨機(jī)抽取50個(gè)商家,對(duì)它們的“平均送達(dá)時(shí)間”進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖如圖.

1)試估計(jì)使用A款訂餐軟件的50個(gè)商家的“平均送達(dá)時(shí)間”的眾數(shù)及平均數(shù);

2)根據(jù)以上抽樣調(diào)查數(shù)據(jù),回答以下問(wèn)題:

(。榱私馊绾谓档透魃碳业乃筒蜁r(shí)間,我們先從這100家商家里選出平均送達(dá)時(shí)間不超過(guò)20分鐘的商家,然后再?gòu)闹须S機(jī)挑選兩家進(jìn)行跟蹤研究,求恰好所抽中的商家均為使用B款軟件的概率.

(ⅱ)如果你要從AB兩款訂餐軟件中選擇一款訂餐,你會(huì)選擇哪款?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案