【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)寫出直線的普通方程及曲線的直角坐標(biāo)方程;
(2)已知點,點,直線過點且曲線相交于,兩點,設(shè)線段的中點為,求的值.
【答案】(1)的普通方程為,曲線的直角坐標(biāo)方程為;(2)8.
【解析】
試題(1)消去參數(shù)可得的普通方程為,極坐標(biāo)方程化為直角坐標(biāo)方程可得曲線的直角坐標(biāo)方程為;
(2)易得點在上,所以,,所以的參數(shù)方程為,
聯(lián)立直線的參數(shù)方程與拋物線方程可得.結(jié)合參數(shù)的幾何意義可知.
試題解析:(1)由直線的參數(shù)方程消去,得的普通方程為,
由得,
所以曲線的直角坐標(biāo)方程為;
(2)易得點在上,所以,所以,
所以的參數(shù)方程為,
代入中,得.
設(shè),,所對應(yīng)的參數(shù)分別為,,.
則,所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點與短軸的一個端點是等邊三角形的三個頂點,且長軸長為4.
求橢圓E的方程;
若A是橢圓E的左頂點,經(jīng)過左焦點F的直線l與橢圓E交于C,D兩點,求與為坐標(biāo)原點的面積之差絕對值的最大值.
已知橢圓E上點處的切線方程為,T為切點若P是直線上任意一點,從P向橢圓E作切線,切點分別為N,M,求證:直線MN恒過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)P是圓x2+y2=25上的動點,點D是P在x軸上的投影,M為PD上一點,且|MD|=|PD|,當(dāng)P在圓上運(yùn)動時,求點M的軌跡C的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《山東省高考改革試點方案》規(guī)定:從2017年秋季高中入學(xué)的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成.將每門選考科目的考生原始成績從高到低劃分為A、B+、B、C+、C、D+、D、E共8個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績計入考生總成績時,將A至E等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個分?jǐn)?shù)區(qū)間,得到考生的等級成績.
某校高一年級共2000人,為給高一學(xué)生合理選科提供依據(jù),對六個選考科目進(jìn)行測試,其中物理考試原始成績基本服從正態(tài)分布N(60,169).
(Ⅰ)求物理原始成績在區(qū)間(47,86)的人數(shù);
(Ⅱ)按高考改革方案,若從全省考生中隨機(jī)抽取3人,記X表示這3人中等級成績在區(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.
(附:若隨機(jī)變量,則,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以為極點,軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于,兩點.
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若點的極坐標(biāo)為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)當(dāng)時,求函數(shù)的極值;
(2)若在區(qū)間上存在不相等的實數(shù),使得成立,求的取值范圍;
(3)設(shè)的圖象為,的圖象為,若直線與分別交于,問是否存在整數(shù),使在處的切線與在處的切線互相平行,若存在,求出的所有值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列判斷錯誤的是( )
A.是為可導(dǎo)函數(shù)的極值點的必要不充分條件
B.命題“”的否定是
C.命題“若,則”的逆否命題是“若,則或”
D.若,則方程有實數(shù)根的逆命題是假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從裝有個不同小球的口袋中取出個小球(),共有種取法。在這種取法中,可以視作分為兩類:第一類是某指定的小球未被取到,共有種取法;第二類是某指定的小球被取到,共有種取法。顯然,即有等式:成立。試根據(jù)上述想法,下面式子(其中)應(yīng)等于 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的偶函數(shù)滿足,且在上是增函數(shù),若是銳角三角形的兩個內(nèi)角,則( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com