(本小題滿分12分)在等差數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000327896456.png)
中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000327927423.png)
,前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000327943297.png)
項和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000328099388.png)
,等比數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000328115471.png)
各項均為正數(shù),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000328130389.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000328161612.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000328115471.png)
的公比
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000328193608.png)
.
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000328224348.png)
與
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000328224365.png)
;(2)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000328255769.png)
.
(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000328271720.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000328286670.png)
試題分析:(1)設(shè)等比數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000328115471.png)
的公比為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000328333310.png)
,則由已知可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240003283491075.png)
,
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000328364405.png)
或
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000328395401.png)
(舍去),所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000328411445.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000328427980.png)
. ----6分
(2)由等差數(shù)列的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000327943297.png)
項和公式有:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240003285671079.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240003285831203.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240003285982673.png)
---12分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000327943297.png)
項和,考查學(xué)生的運算求解能力.
點評:等差、等比數(shù)列經(jīng)常結(jié)合在一起出題,要準確應(yīng)用其相關(guān)公式和性質(zhì),另外裂項法是求前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000327943297.png)
項和的重要方法,要賺錢計算.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在數(shù)列{
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000204795348.png)
}中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000204826481.png)
,并且對任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000204826678.png)
都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000204842714.png)
成立,令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000204873991.png)
.
(Ⅰ)求數(shù)列{
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000204888364.png)
}的通項公式;
(Ⅱ)設(shè)數(shù)列{
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000204904468.png)
}的前n項和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000204920373.png)
,證明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000204935705.png)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知等差數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001226222457.png)
中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001226238836.png)
的值是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000643786388.png)
是等比數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000643801481.png)
的公比
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000643801385.png)
且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000643786388.png)
是它的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000643833297.png)
項的和。若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000643848682.png)
。(1)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000643801481.png)
的通項公式;
(2)設(shè)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000643879828.png)
,求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000643895491.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000643833297.png)
項和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000643942373.png)
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)已知等差數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000358441481.png)
的前四項和為10,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000358457488.png)
成等比數(shù)列
(1)求通項公式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000358472348.png)
(2)設(shè)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000358488553.png)
,求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000358503365.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000358519297.png)
項和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000358550328.png)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)已知數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235834772481.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235834803297.png)
項和是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235834818388.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235834834607.png)
.
(Ⅰ)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235834772481.png)
的通項公式;
(Ⅱ)記
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235834896697.png)
,求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235834912491.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235834803297.png)
項和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235835318373.png)
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知等差數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235218905457.png)
中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235218920562.png)
,則數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235218905457.png)
的前11項和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235218967356.png)
等于
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000244528456.png)
是等差數(shù)列,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000244544591.png)
,則數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000244528456.png)
前8項的和為( )
查看答案和解析>>