【題目】撫州市某中學(xué)利用周末組織教職員工進(jìn)行了一次秋季登軍峰山健身的活動(dòng),有人參加,現(xiàn)將所有參加人員按年齡情況分為,,,等七組,其頻率分布直方圖如下圖所示.已知之間的參加者有4人.

1)求之間的參加者人數(shù);

2)組織者從之間的參加者(其中共有名女教師包括甲女,其余全為男教師)中隨機(jī)選取名擔(dān)任后勤保障工作,求在甲女必須入選的條件下,選出的女教師的人數(shù)為2人的概率.

3)已知之間各有名數(shù)學(xué)教師,現(xiàn)從這兩個(gè)組中各選取人擔(dān)任接待工作,設(shè)兩組的選擇互不影響,求兩組選出的人中都至少有名數(shù)學(xué)教師的概率?

【答案】(1),(2)(3)

【解析】

1)先根據(jù)頻率分布直方圖求出年齡在內(nèi)的頻率,再根據(jù)樣本總數(shù)=頻數(shù)/頻率,即可求出;(2)根據(jù)古典概型的概率計(jì)算公式,通過(guò)列舉,分別求出“在甲女必須入選的條件下”的基本事件總數(shù),“在甲女必須入選的條件下,選出的女教師的人數(shù)為2人”的事件數(shù),即可算出概率;(3)根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率公式,只需分別求出兩組各自選取兩人中至少有一名數(shù)學(xué)老師的概率,相乘即可求出。

1)由題可知,,故

,則

2)由題可知,則有4名女教師和2名男教師,設(shè)女教師為甲,乙,丙,丁,男教師為A,B,從中隨機(jī)選取3名擔(dān)任后勤保障工作,由于甲女一定入選,所以只需從剩下的5名老師中選取2名,基本事件有如下10種情況,(乙丙)(乙。ㄒA)(乙B)(丙。ūA)(丙B)(丁A)(丁B)(AB),其中恰有2女教師的有(乙A)(乙B)(丙A)(丙B)(丁A)(丁B)共6種情況,故

3)由題可知,,所以

,而兩組的選擇互不影響,所以互為獨(dú)立事件,故

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,PA=PD,∠DAB=60°.

(1)證明:ADPB.

(2)若PB=,AB=PA=2,求三棱錐P-BCD的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),圓,過(guò)點(diǎn)的直線與圓交于兩點(diǎn),線段的中點(diǎn)為不同于),若,則的方程是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,己知圓,且圓被直線截得的弦長(zhǎng)為2.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)若圓的切線軸和軸上的截距相等,求切線的方程;

(3)若圓上存在點(diǎn),由點(diǎn)向圓引一條切線,切點(diǎn)為,且滿足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為,焦距為2,拋物線的準(zhǔn)線經(jīng)過(guò)的左焦點(diǎn).

(1)求的方程;

(2)直線經(jīng)過(guò)的上頂點(diǎn)且交于兩點(diǎn),直線分別交于點(diǎn)(異于點(diǎn)),(異于點(diǎn)),證明:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)研機(jī)構(gòu),對(duì)本地歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,將生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,結(jié)果顯示,有人為“低碳族”,該人的年齡情況對(duì)應(yīng)的頻率分布直方圖如圖.

1)根據(jù)頻率分布直方圖,估計(jì)這名“低碳族”年齡的平均值,中位數(shù);

2)若在“低碳族”且年齡在的兩組人群中,用分層抽樣的方法抽取人,試估算每個(gè)年齡段應(yīng)各抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系,曲線的參數(shù)方程為(其中為參數(shù))曲線的普通方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系.

1)求曲線和曲線的極坐標(biāo)方程;

2)射線:依次與曲線和曲線交于、兩點(diǎn),射線:依次與曲線和曲線交于兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過(guò)點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。

(1)寫(xiě)出直線l的普通方程和曲線C的直角坐標(biāo)方程:

(2)若成等比數(shù)列,求a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)a1時(shí),求不等式f(x)2的解集;

(2)若對(duì)任意xR,不等式f(x)≥a23a3恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案