【題目】已知點(diǎn),圓,過點(diǎn)的直線與圓交于兩點(diǎn),線段的中點(diǎn)為(不同于),若,則的方程是__________.
【答案】
【解析】
圓C的標(biāo)準(zhǔn)方程可化為(x﹣2)2+y2=6,
所以圓心為C(2,0),半徑為,
設(shè)M(x,y),則=(x﹣2,y),=(1﹣x,1﹣y),
由題設(shè)知=0,故(x﹣2)(1﹣x)+y(1﹣y)=0,
即(x﹣)2+(y﹣)2=.
由于點(diǎn)P在圓C的內(nèi)部,
所以M的軌跡方程是(x﹣)2+(y﹣)2=.
M的軌跡是以點(diǎn)N(,)為圓心,為半徑的圓.
由于|OP|=|OM|,故O在線段PM的中垂線上,
又P在圓N上,從而ON⊥PM.
因?yàn)镺N的斜率為,所以l的斜率為﹣3,
故l的方程為y﹣1=﹣3(x﹣1),即3x+y﹣4=0.
故答案為3x+y﹣4=0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=pn+q(p≠0且p≠1),求證:數(shù)列{an}為等比數(shù)列的充要條件為q=-1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx﹣3x在x處取得極值.
(1)若對(duì)任意x∈(0,+∞),f(x)≤m恒成立,求實(shí)數(shù)m的取值范圍;
(2)討論函數(shù)F(x)=f(x)+x2+k(k∈R)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】貨車欲以xkm/h的速度行駛,去130km遠(yuǎn)的某地,按交通法規(guī),限制x的允許范圍是50≤x≤100,假設(shè)汽油的價(jià)格為2元/升,而汽車耗油的速率是升/小時(shí).司機(jī)的工資是14元/小時(shí),試問最經(jīng)濟(jì)的車速是多少?這次行車往返的總費(fèi)用最低是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
對(duì)函數(shù)Φ(x),定義fk(x)=Φ(x-mk)+nk(其中x∈(mk,m+mk],k∈Z,m>0,n>0,且m、n為常數(shù))為Φ(x)的第k階階梯函數(shù),m叫做階寬,n叫做階高,已知階寬為2,階高為3.
(1)當(dāng)Φ(x)=2x時(shí) ①求f0(x)和fk(x)的解析式; ②求證:Φ(x)的各階階梯函數(shù)圖象的最高點(diǎn)共線;
(2)若Φ(x)=x2,則是否存在正整數(shù)k,使得不等式fk(x)<(1-3k)x+4k2+3k-1有解?若存在,求出k的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. “f(0)”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B. 若p:,,則:,
C. “若,則”的否命題是“若,則”
D. 若為假命題,則p,q均為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級(jí)有3名同學(xué)報(bào)名參加學(xué)校組織的辯論賽,現(xiàn)有甲、乙兩個(gè)辨題可以選擇,學(xué)校決定讓選手以抽取卡片(除上面標(biāo)的數(shù)不同外其他完全相同)的方式選擇辯題,且每名選手抽取后放回.已知共有10張卡片,卡片上分別標(biāo)有共10個(gè)數(shù).若抽到卡片上的數(shù)為質(zhì)數(shù)(2,3,5,7),則選擇甲辨題,否則選擇乙辯題.
(1)求這3名同學(xué)中至少有1人選擇甲辨題的概率.
(2)用X、Y分別表示這3名同學(xué)中選擇甲、乙辨題的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】撫州市某中學(xué)利用周末組織教職員工進(jìn)行了一次秋季登軍峰山健身的活動(dòng),有人參加,現(xiàn)將所有參加人員按年齡情況分為,,,,,,等七組,其頻率分布直方圖如下圖所示.已知之間的參加者有4人.
(1)求和之間的參加者人數(shù);
(2)組織者從之間的參加者(其中共有名女教師包括甲女,其余全為男教師)中隨機(jī)選取名擔(dān)任后勤保障工作,求在甲女必須入選的條件下,選出的女教師的人數(shù)為2人的概率.
(3)已知和之間各有名數(shù)學(xué)教師,現(xiàn)從這兩個(gè)組中各選取人擔(dān)任接待工作,設(shè)兩組的選擇互不影響,求兩組選出的人中都至少有名數(shù)學(xué)教師的概率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為梯形,,,,平面,分別是的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)若與平面所成的角為,求線段的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com