【題目】直線y=x與函數(shù) 的圖象恰有三個公共點,則實數(shù)m的取值范圍是 .
【答案】﹣1≤m<2
【解析】解:根據(jù)題意,直線y=x與射線y=2(x>m)有一個交點A(2,2), 并且與拋物線y=x2+4x+2在(﹣∞,m]上的部分有兩個交點B、C
由 ,聯(lián)解得B(﹣1,﹣1),C(﹣2,﹣2)
∵拋物線y=x2+4x+2在(﹣∞,m]上的部分必須包含B、C兩點,
且點A(2,2)一定在射線y=2(x>m)上,才能使y=f(x)圖象與y=x有3個交點
∴實數(shù)m的取值范圍是﹣1≤m<2
所以答案是:﹣1≤m<2
【考點精析】根據(jù)題目的已知條件,利用函數(shù)的零點與方程根的關系的相關知識可以得到問題的答案,需要掌握二次函數(shù)的零點:(1)△>0,方程 有兩不等實根,二次函數(shù)的圖象與 軸有兩個交點,二次函數(shù)有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數(shù)的圖象與 軸有一個交點,二次函數(shù)有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數(shù)的圖象與 軸無交點,二次函數(shù)無零點.
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在直角梯形ABCP中,CP∥AB,CP⊥CB,AB=BC= CP=2,D是CP的中點,將△PAD沿AD折起,使得PD⊥CD.
(Ⅰ)若E是PC的中點,求證:AP∥平面BDE;
(Ⅱ)求證:平面PCD⊥平面ABCD;
(Ⅲ)求二面角A﹣PB﹣C的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,已知直線l的極坐標方程 為ρsin(θ+ )=1,圓C的圓心是C(1, ),半徑為1,求:
(1)圓C的極坐標方程;
(2)直線l被圓C所截得的弦長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)y=2sin(2x+ )的圖象向右平移 個單位,所得圖象對應的函數(shù)( )
A.在區(qū)間[ , ]上單調遞增
B.在區(qū)間[ , ]上單調遞減
C.在區(qū)間[﹣ , ]上單調遞增
D.在區(qū)間[﹣ , ]上單調遞減
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二孩放開”政策的熱度,現(xiàn)在對某市年齡在35歲的人調查,隨機選取年齡在35歲的100人進行調查,得到他們的情況為:在55名男性中,支持生二孩的有40人,不支持生二孩的有15人;在45名女性中,支持生二孩的有20人,不支持的有25人.
(Ⅰ)完成下面2×2列聯(lián)表,并判斷有多大的把握認為“支持生二孩與性別有關”?
支持生二孩 | 不支持生二孩 | 合計 | |
男性 | |||
女性 | |||
合計 |
附:K2= ,其中n=a+b+c+d
P(K2≥k0) | 0.150 | 0.100 | 0.050 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(Ⅱ)在被調查的人員中,按分層抽樣的方法從支持生二孩的人中抽取6人,再用簡單隨機抽樣的方法從這6人中隨機抽取2人,求這2人中恰好有1名男性的概率;
(Ⅲ)以上述樣本數(shù)據(jù)估計總體,從年齡在35歲人中隨機抽取3人,記這3人中支持生二孩且為男性的人數(shù)為X,求X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點P(﹣1, )是橢圓E: =1(a>b>0)上一點,F(xiàn)1 , F2分別是橢圓E的左、右焦點,O是坐標原點,PF1⊥x軸.
(1)求橢圓E的方程;
(2)設A,B是橢圓E上兩個動點,滿足: (0<λ<4,且λ≠2),求直線AB的斜率.
(3)在(2)的條件下,當△PAB面積取得最大值時,求λ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義1:若函數(shù)f(x)在區(qū)間D上可導,即f′(x)存在,且導函數(shù)f′(x)在區(qū)間D上也可導,則稱函數(shù)f(x)在區(qū)間D上的存在二階導數(shù),記作f″(x)=[f′(x)]′. 定義2:若函數(shù)f(x)在區(qū)間D上的二階導數(shù)恒為正,即f″(x)>0恒成立,則稱函數(shù)f(x)在區(qū)間D上為凹函數(shù).已知函數(shù)f(x)=x3﹣ x2+1在區(qū)間D上為凹函數(shù),則x的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD 中,∠ABC=∠BAD=90°,BC=2AD,△PAB與△PAD 都是邊長為2的等邊三角形,E 是BC的中點.
(Ⅰ)證明:平面AE∥平面 PCD;
(Ⅱ)求PAB與平面 PCD 所成二面角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+ )的圖象與x軸交點的橫坐標,依次構成一個公差為 的等差數(shù)列,把函數(shù)f(x)的圖象沿x軸向左平移 個單位,得到函數(shù)g(x)的圖象,則( )
A.g(x)是奇函數(shù)
B.g(x)的圖象關于直線x=﹣ 對稱
C.g(x)在[ , ]上的增函數(shù)
D.當x∈[ , ]時,g(x)的值域是[﹣2,1]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com