經(jīng)過雙曲線x2-y2=8的右焦點且斜率為2的直線被雙曲線截得的線段的長是(    )
A.B.2C.D.7
C
雙曲線x2-y2=8,右焦點F2(4,0),過F2斜率為2的直線方程為y=2(x-4),代入x2-y2=8中,消去y得3x2-32x+72=0,據(jù)弦長公式|AB|=|x1-x2|=.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

A、B、C是我方三個炮兵陣地,A在B的正東方向,相距6 km,C在B的北偏西30°方向上,相距4 km,P為敵炮陣地.某時刻A發(fā)現(xiàn)敵炮陣地的某種信號,由于B、C兩地比A距P地遠,因此4 s后,B、C才同時發(fā)現(xiàn)這一信號(該信號的傳播速度為1 km/s).A若炮擊P地,求炮擊的方位角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線-=1和=1(-9<k<25)有(    )
A.相同焦點B.相同漸近線
C.相同頂點D.相等的離心率

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

雙曲線C1:-=1和C2:-=-1的離心率分別是e1和e2(a>0,b>0),則e1+e2的最小值是_____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題



(1)求雙曲線的標準方程;
(2)設F1和F2是這雙曲線的左、右焦點,點P在這雙曲線上,且|PF1|·|PF2|=32,求
∠F1PF2的大小

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線-=1的焦點為F1、F2,點M在雙曲線上且MF1⊥x軸,則F1到直線F2M的距離為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線與橢圓有共同的焦點,且以為漸近線.
(1)求雙曲線方程.
(2)求雙曲線的實軸長.虛軸長.焦點坐標及離心率

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,傾斜角為的直線經(jīng)過拋物線y2=8x的焦點F,且與拋物線交于A、B兩點.
(1)求拋物線焦點F的坐標及準線l的方程;
(2)若為銳角,作線段AB的垂直平分線m交x軸于點P,證明|FP|-|FP|cos2為定值, 
并求此定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知中心在原點,頂點軸上,離心率為的雙曲線經(jīng)過點
(I)求雙曲線的方程;
(II)動直線經(jīng)過的重心,與雙曲線交于不同的兩點,問是否存在直線使平分線段。試證明你的結(jié)論

查看答案和解析>>

同步練習冊答案