分析 由an=2n-7,可得其前n項和Sn=n2-6n.令an≤0,解得n≤3,當(dāng)n≤3時,an<0,Tn=Sn.當(dāng)n≥4時,an>0,可得Tn=-2S3+Sn,即可得出.
解答 解:由an=2n-7,可得其前n項和Sn=$\frac{n(-5+2n-7)}{2}$=n2-6n.
令an=2n-7≤0,
解得n≤$\frac{7}{2}$,
∴當(dāng)n≤3時,an<0,Tn=Sn=n2-6n.
當(dāng)n≥4時,an>0,
Tn=-a1-a2-a3+a4+…+an
=-2S3+Sn
=n2-6n-2×(32-6×3)
=n2-6n+18.
綜上可得:Tn=$\left\{\begin{array}{l}{{n}^{2}-6n,n≤3}\\{{n}^{2}-6n+18,n≥4}\end{array}\right.$.
點評 本題考查了等差數(shù)列的通項公式及其前n項和公式、含絕對值數(shù)列的求和問題,考查了分類討論方法、推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a-d>b-c | B. | $\frac{a}w4frkhd$>$\frac{c}$ | C. | a+d>b+c | D. | ac>bd |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2π}{3}$ | B. | π | C. | $\frac{π}{2}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com