如圖,在斜三棱柱ABC—A1B1C1中,AB⊥側(cè)面BB1C1C,BC=2,BB1=4,AB=,∠BCC1=60°.
(Ⅰ)求證:C1B⊥平面A1B1C1;
(Ⅱ)求A1B與平面ABC所成角的正切值;
(Ⅲ)若E為CC1中點(diǎn),求二面角A—EB1—A1的正切值.
(Ⅰ)由余弦定理可得BC1=
利用BC2+BC12=CC12得C1B⊥CB,
又平面A1B1C1∥平面ABC 得到 C1B⊥平面A1B1C1.
(Ⅱ);
(Ⅲ)二面角的正切值為.
解析試題分析:(Ⅰ)證明:∵BC=2,CC1=4,∠BCC1=60°由余弦定理可得BC1=
∴BC2+BC12=CC12 ∴∠CBC1=90° ∴C1B⊥CB 2分
又AB⊥面BB1C1C ∴C1B⊥AB,AB∩CB=B ∴C1B⊥平面ABC,
又平面A1B1C1∥平面ABC ∴ C1B⊥平面A1B1C1 4分
(Ⅱ)∵平面A1B1C1∥平面ABC
∴A1B與平面ABC所成的角等于A1B與平面A1B1C1所成的角 5分
由(Ⅰ)知C1B⊥平面ABC ∴C1B⊥平面A1B1C1
∴∠BA1C1即為A1B與平面A1B1C1所成的角 6分
∠BC1 A1=90° A1C1 ∴ 8分
(Ⅲ)CE=BC=2,∠BCE=60° ∴BE=2 ∠EC1B1=120° C1E=C1B1=2 ∴EB1
∴BE2+B1E2=B1B2 ∴∠BEB1=90°即B1E⊥BE 又AB⊥平面BCC1B1
∴B1E⊥AE ∴∠AEB為二面角A—EB1—B的平面角 9分
10分
又∵A1B1⊥平面B1EB ∴平面A1B1E⊥平面B1EB
∴二面角A—EB1—A1的大小為=90°-∠AEB 11分
即所求二面角的正切值為 13分
解法二:易知,面,,面,
∴異面直線與所成角即為所求二面角的大小. 10分
∵∴即為異面直線與所成角, 11分
易得,即所求二面角的正切值為 13分
考點(diǎn):本題主要考查立體幾何中的垂直關(guān)系、角的計(jì)算。
點(diǎn)評(píng):典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問(wèn)題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,利用空間向量,省去繁瑣的證明,也是解決立體幾何問(wèn)題的一個(gè)基本思路。注意運(yùn)用轉(zhuǎn)化與化歸思想,將空間問(wèn)題轉(zhuǎn)化成平面問(wèn)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,ABCD是邊長(zhǎng)為2的正方形,ED⊥平面ABCD, ED="1," EF//BD且2EF=BD.
(1)求證:平面EAC⊥平面BDEF;
(2)求幾何體ABCDEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐中,底面是正方形,側(cè)面底面,若、分別為、的中點(diǎn).
(Ⅰ) 求證://平面;
(Ⅱ) 求證:平面平面;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,在三棱錐PABC中,已知PC⊥平面ABC,點(diǎn)C在平面PBA內(nèi)的射影D在直線PB上.
(1)求證:AB⊥平面PBC;
(2)設(shè)AB=BC,直線PA與平面ABC所成的角為45°,求異面直線AP與BC所成的角;
(3)在(2)的條件下,求二面角C-PA-B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐中,平面平面,,,,是中點(diǎn),是中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC=,求AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,為圓的直徑,點(diǎn)、在圓上,,矩形所在的平面和圓所在的平面互相垂直,且,.
(1)求證:平面;
(2)設(shè)的中點(diǎn)為,求證:平面;
(3)設(shè)平面將幾何體分成的兩個(gè)錐體的體積分別為,,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在正四棱錐中,底面是邊長(zhǎng)為2的正方形,側(cè)棱,為的中點(diǎn),是側(cè)棱上的一動(dòng)點(diǎn)。
(1)證明:;
(2)當(dāng)直線時(shí),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖甲,在平面四邊形ABCD中,已知,,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD平面BDC(如圖乙),設(shè)點(diǎn)E、F分別為棱AC、AD的中點(diǎn).
(1)求證:DC平面ABC;
(2)求BF與平面ABC所成角的正弦值;
(3)求二面角B-EF-A的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com