在三棱錐P-ABC中,PA=PB=PC=數(shù)學(xué)公式,側(cè)棱PA與底面ABC所成的角為60°,則該三棱錐外接球的體積為


  1. A.
  2. B.
    數(shù)學(xué)公式
  3. C.
  4. D.
    數(shù)學(xué)公式
D
分析:過(guò)點(diǎn)P作PH⊥平面ABC于H,可得∠PAH是直線PA與底面ABC所成的角,得∠PAH=60°.由PA=PB=PC,得外接球心O必定在PH上,連接OA,可得△POA是底角等于30°的等腰三角形,從而得到外接球的半徑R=OA=1,再用球的體積公式可得該三棱錐外接球的體積.
解答:過(guò)點(diǎn)P作PH⊥平面ABC于H,則
∵AH是PA在平面ABC內(nèi)的射影
∴∠PAH是直線PA與底面ABC所成的角,得∠PAH=60°,
∴Rt△PAH中,AH=PAcos60°=,PH=PAsin60°=
設(shè)三棱錐外接球的球心為O,
∵PA=PB=PC,∴P在平面ABC內(nèi)的射影H是△ABC的外心
由此可得,外接球心O必定在PH上,連接OA、OB、OC
∵△POA中,OP=OA,
∴∠OAP=∠OPA=30°,可得PA==
∴三棱錐外接球的半徑R=OA=1
因此該三棱錐外接球的體積為V=πR3=
故選:D
點(diǎn)評(píng):本題給出三棱錐的三條側(cè)棱兩兩相等,在已知一條側(cè)棱與底面所成角的情況下求外接球的體積,著重考查了直線與平面所成角的定義、球內(nèi)接多面體和球體積的求法等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐P-ABC中,PA=PB=AB=
2
PC=
2
AC=
2
BC

(Ⅰ)求證:PA⊥BC; 
(Ⅱ)求二面角P-AB-C所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三棱錐P-ABC中,AB=3,BC=4,AC=5,PA=1  面PAB⊥面CAB,面PAC⊥面CAB,則三棱錐P-ABC的體積是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在三棱錐P-ABC中,PA⊥平面ABC.
(1)若∠BAC=
π3
,AB=AC=PA=2,E、F分別為棱AB、PC的中點(diǎn),求線段EF的長(zhǎng);
(2)求證:“∠PBC=90°”的充要條件是“平面PBC⊥平面PAB”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•蚌埠二模)如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分別為AB,AC中點(diǎn).
(I)求證:DE∥面PBC;
(II)求證:AB⊥PE;
(III)求三棱錐B-PEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐P-ABC中,PA⊥平面ABC,AC⊥BC,D為側(cè)棱PC上一點(diǎn),它的正(主)視圖和側(cè)(左)視圖如圖所示.
(1)證明:AD⊥平面PBC;
(2)求三棱錐D-ABC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案