給出下列四個(gè)命題:
①函數(shù)f(x)=lnx-2+x在區(qū)間(1,e)上存在零點(diǎn);
②若f'(x0)=0,則函數(shù)y=f(x)在x=x0取得極值;
③m≥-1,則函數(shù)y=log
1
2
(x2-2x-m)
的值域?yàn)镽;
④“a=1”是“函數(shù)f(x)=
a-ex
1+aex
在定義域上是奇函數(shù)”的充分不必要條件.
其中真命題是
 
(把你認(rèn)為正確的命題序號(hào)都填在橫線上)
分析:①結(jié)合零點(diǎn)判定定理②結(jié)合極值存在條件:該點(diǎn)導(dǎo)數(shù)為0,且兩側(cè)導(dǎo)函數(shù)導(dǎo)數(shù)值符號(hào)相反③結(jié)合對(duì)數(shù)函數(shù)的值域,要求x2-2x-m取到所有的正數(shù)④根據(jù)函數(shù)奇偶性的定義驗(yàn)證f(x)與f(-x)的關(guān)系.
解答:解:①結(jié)合零點(diǎn)判定定理:f(1)•f(e)<0可知①正確
②f(x)=x3,f′(0)=0,但函數(shù)f(x)=x3在R遞增,無(wú)極值點(diǎn)②錯(cuò)誤
y=log
1
2
(x2-2x-m)
的值域?yàn)镽,則4+4m≥0,解得m≥-1,③正確
④a=1,f(x)=
1-ex
1+ex
,f(-x)=
1-e-x
1+e-x
=
ex-1
ex+1
=-f(x)
,正確
故答案為:①③④
點(diǎn)評(píng):本題考查了函數(shù)的相關(guān)性質(zhì)的運(yùn)用:零點(diǎn)判定定理,函數(shù)在某點(diǎn)取得極值的條件,對(duì)數(shù)函數(shù)與二次函數(shù)的復(fù)合函數(shù)的值域,奇偶性的判斷,屬于基礎(chǔ)知識(shí)的運(yùn)用,要求考生熟練掌握各知識(shí)點(diǎn),靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12、已知a、b是兩條不重合的直線,α、β、γ是三個(gè)兩兩不重合的平面,給出下列四個(gè)命題:
①若a⊥α,a⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,a?α,b?β,則a∥b;
④若α∥β,α∩γ=a,β∩γ=b,則a∥b.
其中正確命題的序號(hào)有
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=
1
x
的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
②函數(shù)y=x2-4x+6,當(dāng)x∈[1,4]時(shí),函數(shù)的值域?yàn)閇3,6];
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個(gè)單位得到;
④若函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,則A∩B=A.
其中正確命題的序號(hào)是
③④⑤
③④⑤
.(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將邊長(zhǎng)為2,銳角為60°的菱形ABCD沿較短對(duì)角線BD折成二面角A-BD-C,點(diǎn)E,F(xiàn)分別為AC,BD的中點(diǎn),給出下列四個(gè)命題:
①EF∥AB;②直線EF是異面直線AC與BD的公垂線;③當(dāng)二面角A-BD-C是直二面角時(shí),AC與BD間的距離為
6
2
;④AC垂直于截面BDE.
其中正確的是
②③④
②③④
(將正確命題的序號(hào)全填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題,其中正確的命題的個(gè)數(shù)為( 。
①命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函數(shù)y=tan
x
2
的對(duì)稱中心為(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),其中正確命題的序號(hào)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案