【題目】水是地球上寶貴的資源,由于介個(gè)比較便宜在很多不缺水的城市居民經(jīng)常無節(jié)制的使用水資源造成嚴(yán)重的資源浪費(fèi).某市政府為了提倡低碳環(huán)保的生活理念鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過x的部分按平價(jià)收費(fèi),超出x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),[1,1.5),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(1)若全市居民中月均用水量不低于3噸的人數(shù)為3.6萬,試估計(jì)全市有多少居民?并說明理由;
(2)若該市政府?dāng)M采取分層抽樣的方法在用水量噸數(shù)為[1,1.5)和[1.5,2)之間選取7戶居民作為議價(jià)水費(fèi)價(jià)格聽證會(huì)的代表,并決定會(huì)后從這7戶家庭中按抽簽方式選出4戶頒發(fā)“低碳環(huán)保家庭”獎(jiǎng),設(shè)X為用水量噸數(shù)在[1,1.5)中的獲獎(jiǎng)的家庭數(shù),Y為用水量噸數(shù)在[1.5,2)中的獲獎(jiǎng)家庭數(shù),記隨機(jī)變量Z=|X﹣Y|,求Z的分布列和數(shù)學(xué)期望.
【答案】
(1)解:由圖,不低于3噸人數(shù)所占百分比為0.5×(0.12+0.08+0.04)=12%,
所以假設(shè)全市的人數(shù)為x(萬人),則有0.12x=3.6,解得x=30,
所以估計(jì)全市人數(shù)為30萬
(2)解:由概率統(tǒng)計(jì)相關(guān)知識(shí),各組頻率之和的值為1,
因?yàn)轭l率= ,
所以0.5×(0.08+0.16+0.4+0.52+0.12+0.08+0.04+2a)=1,得a=0.3,
用水量在[1,1.5]之間的戶數(shù)為100×0.3×0.5=15戶,
而用水量在[1.5,2]噸之間的戶數(shù)為100×0.4×0.5=20戶,
根據(jù)分層抽樣的方法,總共需要抽取7戶居民,
所以用水量在[1,1.5]之間應(yīng)抽取的戶數(shù)為 戶,
而用水量在[1.5,2]噸之間的戶數(shù)為 戶.
據(jù)題意可知隨機(jī)變量Z的取值為0,2,4. , , ,
其分布列為:
Z | 0 | 2 | 4 |
P |
期望為:E(Z)=0× +2× + =
【解析】(1)由圖,不低于3噸人數(shù)所占百分比為0.5×(0.12+0.08+0.04)=12%,解出即可得出.(2)由概率統(tǒng)計(jì)相關(guān)知識(shí),各組頻率之和的值為1,頻率= ,可得0.5×(0.08+0.16+0.4+0.52+0.12+0.08+0.04+2a)=1,得a.據(jù)題意可知隨機(jī)變量Z的取值為0,2,4.利用相互獨(dú)立、互斥事件的概率計(jì)算公式即可得出.
【考點(diǎn)精析】關(guān)于本題考查的頻率分布直方圖和離散型隨機(jī)變量及其分布列,需要了解頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)路燈的平面設(shè)計(jì)示意圖,其中曲線段AOB可視為拋物線的一部分,坐標(biāo)原點(diǎn)O為拋物線的頂點(diǎn),拋物線的對(duì)稱軸為y軸,燈桿BC可視為線段,其所在直線與曲線AOB所在的拋物線相切于點(diǎn)B.已知AB=2分米,直線軸,點(diǎn)C到直線AB的距離為8分米.燈桿BC部分的造價(jià)為10元/分米;若頂點(diǎn)O到直線AB的距離為t分米,則曲線段AOB部分的造價(jià)為元. 設(shè)直線BC的傾斜角為,以上兩部分的總造價(jià)為S元.
(1)①求t關(guān)于的函數(shù)關(guān)系式;
②求S關(guān)于的函數(shù)關(guān)系式;
(2)求總造價(jià)S的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.?x,y∈R,若x+y≠0,則x≠1且y≠﹣1
B.a∈R,“ ”是“a>1”的必要不充分條件
C.命題“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0”
D.設(shè)隨機(jī)變量X~N(1,52),若P(X<0)=P(X>a﹣2),則實(shí)數(shù)a的值為2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)經(jīng)銷某商品,顧客可以采用一次性付款或分期付款購(gòu)買,根據(jù)以往資料統(tǒng)計(jì),顧客采用一次性付款的概率是,經(jīng)銷件該產(chǎn)品,若顧客采用一次性付款,商場(chǎng)獲得利潤(rùn)元;若顧客采用分期付款,商場(chǎng)獲得利潤(rùn)元.
(Ⅰ)求位購(gòu)買商品的顧客中至少有位采用一次性付款的概率.
(Ⅱ)若位顧客每人購(gòu)買件該商品,求商場(chǎng)獲得利潤(rùn)不超過元的概率.
(Ⅲ)若位顧客每人購(gòu)買件該商品,設(shè)商場(chǎng)獲得的利潤(rùn)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)口袋中裝有大小、材質(zhì)都相同的個(gè)紅球,個(gè)黑球和個(gè)白球,從口袋中一次摸出一個(gè)球,連續(xù)摸球兩次.
()如果摸出后不放回,求第一次摸出黑球,第二次摸出白球的概率;
()如果摸出后放回,求恰有一次摸到黑球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心為的圓,滿足下列條件:圓心位于軸正半軸上,與直線相切且被軸截得的弦長(zhǎng)為,圓的面積小于13.
(Ⅰ)求圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過點(diǎn)的直線與圓交于不同的兩點(diǎn),以為鄰邊作平行四邊形.是否存在這樣的直線,使得直線與恰好平行?如果存在,求出的方程;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,以x軸正半軸為始邊作銳角α,其終邊與單位圓交于點(diǎn)A.以O(shè)A為始邊作銳角β,其終邊與單位圓交于點(diǎn)B,AB= .
(1)求cosβ的值;
(2)若點(diǎn)A的橫坐標(biāo)為 ,求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)問:能否為偶函數(shù)?請(qǐng)說明理由;
(2)總存在一個(gè)區(qū)間,當(dāng)時(shí),對(duì)任意的實(shí)數(shù),方程無解,當(dāng)時(shí),存在實(shí)數(shù),方程有解,求區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com