A. | -4 | B. | 4 | C. | 3 | D. | -3 |
分析 求出f(x)的導數(shù),由導數(shù)的幾何意義,可得在點($\frac{1}{3}$,f($\frac{1}{3}$))處的切線斜率,再由直線的斜率公式,可得斜率為1,解方程可得a.
解答 解:函數(shù)f(x)=ln3x+ax+1的導數(shù)為
f′(x)=$\frac{1}{x}$+a,
在點($\frac{1}{3}$,f($\frac{1}{3}$))處的切線斜率為a+3,
由切線的傾斜角為$\frac{3π}{4}$,可得切線的斜率為-1,
即為a+3=-1,解得a=-4.
故選:A.
點評 本題考查導數(shù)的運用:求切線的斜率,注意運用直線的斜率公式,考查運算能力,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 函數(shù)$y=x+\frac{4}{x+1}$最小值為3 | B. | 函數(shù)$y=lgx+\frac{1}{lgx}$最小值為2 | ||
C. | 函數(shù)$y={2^x}+\frac{1}{{{2^x}+1}}$最小值為1 | D. | 函數(shù)$y={x^2}+\frac{1}{x^2}$最小值為2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$-f(-$\frac{5π}{6}$)>$\frac{3}{4}$-f(-$\frac{2π}{3}$) | B. | $\frac{1}{4}$-f(-$\frac{5π}{6}$)>$\frac{3}{4}$-f(-$\frac{4π}{3}$) | ||
C. | $\frac{3}{4}$-f($\frac{π}{3}$)>$\frac{1}{2}$-f($\frac{3π}{4}$) | D. | $\frac{1}{2}$-f(-$\frac{3π}{4}$)>$\frac{3}{4}$-f($\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $-\frac{3}{4}$ | C. | $\frac{4}{3}$ | D. | $-\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com