【題目】已知數(shù)列{an}滿足a11,an(nN*,n≥2),數(shù)列{bn}滿足關(guān)系式bn(nN*)

(1)求證:數(shù)列{bn}為等差數(shù)列;

(2)求數(shù)列{an}的通項(xiàng)公式.

【答案】(1)見證明;(2) an.

【解析】

(1)通過對an(nN*,n≥2)兩邊同時(shí)取倒數(shù)、整理得,進(jìn)而可得數(shù)列{bn}是以1為首項(xiàng),2為公差的等差數(shù)列.

(2)通過(1)可知bn2n1,進(jìn)而求倒數(shù)可得結(jié)論.

(1)證明:∵bn,且an,

,

.

b11,∴數(shù)列{bn}是以1為首項(xiàng),2為公差的等差數(shù)列.

(2)解:由(1)知數(shù)列{bn}的通項(xiàng)公式為bn1(n1)×22n1,

bn,∴an.∴數(shù)列{an}的通項(xiàng)公式為an.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,,,,,點(diǎn)為棱的中點(diǎn)

1)證明:

2)若為棱上一點(diǎn),滿足,求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知多面體中,四邊形為菱形,為正四面體,且.

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直角三角形ABC的三個(gè)頂點(diǎn)都在橢圓上,其中A0,1)為直角頂點(diǎn).若該三角形的面積的最大值為,則實(shí)數(shù)a的值為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對有個(gè)元素的總體進(jìn)行抽樣,先將總體分成兩個(gè)子總體是給定的正整數(shù),且),再從每個(gè)子總體中各隨機(jī)抽取2個(gè)元素組成樣本.表示元素同時(shí)出現(xiàn)在樣本中的概率.

1)求的表達(dá)式(用,表示);

2)求所有的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】阿基米德是古希臘偉大的哲學(xué)家、數(shù)學(xué)家、物理學(xué)家,對幾何學(xué)、力學(xué)等學(xué)科作出過卓越貢獻(xiàn).為調(diào)查中學(xué)生對這一偉大科學(xué)家的了解程度,某調(diào)查小組隨機(jī)抽取了某市的100名高中生,請他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項(xiàng)的稱為“比較了解”,少于三項(xiàng)的稱為“不太了解”.他們的調(diào)查結(jié)果如下:

0項(xiàng)

1項(xiàng)

2項(xiàng)

3項(xiàng)

4項(xiàng)

5項(xiàng)

5項(xiàng)以上

理科生(人)

1

10

17

14

14

10

4

文科生(人)

0

8

10

6

3

2

1

(1)完成如下列聯(lián)表,并判斷是否有的把握認(rèn)為,了解阿基米德與選擇文理科有關(guān)?

比較了解

不太了解

合計(jì)

理科生

文科生

合計(jì)

(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.

(i)求抽取的文科生和理科生的人數(shù);

(ii)從10人的樣本中隨機(jī)抽取3人,用表示這3人中文科生的人數(shù),求的分布列和數(shù)學(xué)期望.

參考數(shù)據(jù):

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,c,________.(補(bǔ)充條件)

1)求△ABC的面積;

2)求sinA+B.

從①b4,②cosB,③sinA這三個(gè)條件中任選一個(gè),補(bǔ)充在上面問題中并作答.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020122日,國新辦發(fā)布消息:新型冠狀病毒來源于武漢一家海鮮市場非法銷售的野生動(dòng).專家通過全基因組比對發(fā)現(xiàn)此病毒與2003年的非典冠狀病毒以及此后的中東呼吸綜合征冠狀病毒,分別達(dá)到70%40%的序列相似性.這種新型冠狀病毒對人們的健康生命帶來了嚴(yán)重威脅因此,某生物疫苗研究所加緊對新型冠狀病毒疫苗進(jìn)行實(shí)驗(yàn),并將某一型號疫苗用在動(dòng)物小白鼠身上進(jìn)行科研和臨床實(shí)驗(yàn),得到統(tǒng)計(jì)數(shù)據(jù)如下:

未感染病毒

感染病毒

總計(jì)

未注射疫苗

20

注射疫苗

30

總計(jì)

50

50

100

現(xiàn)從所有試驗(yàn)小白鼠中任取一只,取到“注射疫苗”小白鼠的概率為.

1)求列聯(lián)表中的數(shù)據(jù),,,的值;

2)能否有99.9%把握認(rèn)為注射此種疫苗對預(yù)防新型冠狀病毒有效?

附:.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)的動(dòng)直線ly軸交于點(diǎn),過點(diǎn)T且垂直于l的直線與直線相交于點(diǎn)M.

1)求M的軌跡方程;

2)設(shè)M位于第一象限,以AM為直徑的圓y軸相交于點(diǎn)N,且,求的值.

查看答案和解析>>

同步練習(xí)冊答案