A. | (0,$\frac{\sqrt{2}}{2}$] | B. | [$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{5}}{3}$] | C. | [$\frac{2}{3}$,$\frac{\sqrt{5}}{3}$] | D. | [$\frac{\sqrt{5}}{3}$,1) |
分析 設(shè)F1(-c,0),F(xiàn)2(c,0),運(yùn)用橢圓的定義和勾股定理,求得e2=$\frac{{λ}^{2}+1}{(λ+1)^{2}}$,令m=λ+1,可得λ=m-1,即有$\frac{{λ}^{2}+1}{(λ+1)^{2}}$=$\frac{{m}^{2}-2m+2}{{m}^{2}}$=2($\frac{1}{m}$-$\frac{1}{2}$)2+$\frac{1}{2}$,運(yùn)用二次函數(shù)的最值的求法,解不等式可得所求范圍.
解答 解:設(shè)F1(-c,0),F(xiàn)2(c,0),由橢圓的定義可得,|PF1|+|PF2|=2a,
可設(shè)|PF2|=t,可得|PF1|=λt,
即有(λ+1)t=2a①
由∠F1PF2=$\frac{π}{2}$,可得|PF1|2+|PF2|2=4c2,
即為(λ2+1)t2=4c2,②
由②÷①2,可得e2=$\frac{{λ}^{2}+1}{(λ+1)^{2}}$,
令m=λ+1,可得λ=m-1,
即有$\frac{{λ}^{2}+1}{(λ+1)^{2}}$=$\frac{{m}^{2}-2m+2}{{m}^{2}}$=2($\frac{1}{m}$-$\frac{1}{2}$)2+$\frac{1}{2}$,
由$\frac{1}{2}$≤λ≤2,可得$\frac{3}{2}$≤m≤3,即$\frac{1}{3}$≤$\frac{1}{m}$≤$\frac{2}{3}$,
則m=2時(shí),取得最小值$\frac{1}{2}$;m=$\frac{3}{2}$或3時(shí),取得最大值$\frac{5}{9}$.
即有$\frac{1}{2}$≤e2≤$\frac{5}{9}$,解得$\frac{\sqrt{2}}{2}$≤e≤$\frac{\sqrt{5}}{3}$.
故選:B.
點(diǎn)評 本題考查橢圓的定義、方程和性質(zhì),主要考查離心率的范圍,同時(shí)考查不等式的解法,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=±3x | B. | y=±$\sqrt{3}$x | C. | y=±x | D. | y=±$\frac{\sqrt{3}}{3}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com