【題目】如圖,在四棱錐中,底面為直角梯形,,,的中點(diǎn),,平面平面.

(1)求證:平面平面;

(2)記點(diǎn)到平面的距離為,點(diǎn)到平面的距離為,求的值.

【答案】1)詳見(jiàn)解析;(2

【解析】

1)首先根據(jù)等邊三角形的性質(zhì)證得,再證得,由此證得平面,結(jié)合證得平面,進(jìn)而證得平面平面.

2)建立空間直角坐標(biāo)系,利用向量法計(jì)算出,由此求得的值.

1)因?yàn)槿切?/span>為等邊三角形,,所以.因?yàn)榈酌?/span>為直角梯形,,,的的中點(diǎn),,所以四邊形是正方形,所以,因?yàn)?/span>,所以平面.因?yàn)?/span>,所以平面,由于平面,所以平面平面.

2)由(1)知兩兩垂直,建立如圖所示的空間直角坐標(biāo)系,不妨設(shè),則,,,.,.

設(shè)平面的法向量為,則,取.所以.

設(shè)平面的法向量為,則,取.所以.

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在橢圓上,過(guò)點(diǎn)軸于點(diǎn)

(1)求線段的中點(diǎn)的軌跡的方程

(2)設(shè)、兩點(diǎn)在(1)中軌跡上,點(diǎn),兩直線的斜率之積為,且(1)中軌跡上存在點(diǎn)滿足,當(dāng)面積最小時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某房地產(chǎn)公司新建小區(qū)有A、B兩種戶型住宅,其中A戶型住宅每套面積為100平方米,B戶型住宅每套面積為80平方米,該公司準(zhǔn)備從兩種戶型住宅中各拿出12套銷售給內(nèi)部員工,表是這24套住宅每平方米的銷售價(jià)格:(單位:萬(wàn)元平方米):

房號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

A戶型

2.6

2.7

2.8

2.8

2.9

3.2

2.9

3.1

3.4

3.3

3.4

3.5

B戶型

3.6

3.7

3.7

3.9

3.8

3.9

4.2

4.1

4.1

4.2

4.3

4.5

1)根據(jù)表格數(shù)據(jù),完成下列莖葉圖,并分別求出A,B兩類戶型住宅每平方米銷售價(jià)格的中位數(shù);

A戶型

B戶型

2.

3.

4.

2)該公司決定對(duì)上述24套住房通過(guò)抽簽方式銷售,購(gòu)房者根據(jù)自己的需求只能在其中一種戶型中通過(guò)抽簽方式隨機(jī)獲取房號(hào),每位購(gòu)房者只有一次抽簽機(jī)會(huì),小明是第一位抽簽的員工,經(jīng)測(cè)算其購(gòu)買能力最多為320萬(wàn)元,抽簽后所抽得住房?jī)r(jià)格在其購(gòu)買能力范圍內(nèi)則確定購(gòu)買,否則,將放棄此次購(gòu)房資格,為了使其購(gòu)房成功的概率更大,他應(yīng)該選擇哪一種戶型抽簽?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)科所為改良玉米品種,對(duì)已選出的一組玉米的莖高進(jìn)行統(tǒng)計(jì),獲得莖葉圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.

抗倒伏

易倒伏

總計(jì)

矮莖

高莖

總計(jì)

1)請(qǐng)完成以上列聯(lián)表,并判斷是否可以在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?

2)為改良玉米品種,現(xiàn)采用分層抽樣的方法從抗倒伏的玉米中抽出5株,再?gòu)倪@5株玉米中選取2株進(jìn)行雜交試驗(yàn),則選取的植株均為矮莖的概率是多少?

參考公式:(其中)

參考數(shù)據(jù):

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中錯(cuò)誤的是( )

A.若命題為真命題,命題為假命題,則命題“”為真命題

B.命題“若,則”為真命題

C.命題“若,則”的否命題為“若,則

D.命題:,,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)mx-lnx-1m為常數(shù)).

1)若函數(shù)f(x)恰有1個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍;

2)若不等式mx-exf(x)+a對(duì)正數(shù)x恒成立,求實(shí)數(shù)a的最小整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F1,F2為橢圓E的左、右焦點(diǎn),且|F1F2|2,點(diǎn)E.

1)求E的方程;

2)直線l與以E的短軸為直徑的圓相切,lE交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),試判斷O與以AB為直徑的圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,a、b、c分別是角A、B、C的對(duì)邊,向量=(2sinB,2-cos2B),=(2sin2( ),-1),.

(1)求角B的大。

(2)若a= ,b=1,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,過(guò)焦點(diǎn)的直線與拋物線相交于,兩點(diǎn),且當(dāng)直線傾斜角為時(shí),與拋物線相交所得弦的長(zhǎng)度為8.

1)求拋物線的方程;

2)若分別過(guò)點(diǎn)兩點(diǎn)作拋物線的切線,,兩條切線相交于點(diǎn),點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),判斷四邊形是否存在外接圓,如果存在,求出外接圓面積的最小值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案