【題目】已知拋物線,過焦點(diǎn)的直線與拋物線相交于,兩點(diǎn),且當(dāng)直線傾斜角為時(shí),與拋物線相交所得弦的長度為8.

1)求拋物線的方程;

2)若分別過點(diǎn)兩點(diǎn)作拋物線的切線,,兩條切線相交于點(diǎn),點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),判斷四邊形是否存在外接圓,如果存在,求出外接圓面積的最小值;如果不存在,請(qǐng)說明理由.

【答案】12)存在;最小面積為

【解析】

1)根據(jù)題意求出直線傾斜角為時(shí)的方程,與拋物線方程聯(lián)立,利用根與系數(shù)關(guān)系和焦半徑公式,求出弦長,即可求出;

(2)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,可得,從而有,判斷四邊形是否存在外接圓,只需判斷是否有,即是否垂直,根據(jù)切線的幾何意義,求出的斜率,即可得出結(jié)論,如果存在外接圓,外接圓的直徑為,要使外接圓面積最小,即求最小,利用根與系數(shù)關(guān)系和相交弦長公式,即可求解.

1)由題意知,設(shè)點(diǎn),

當(dāng)直線傾斜角為時(shí),直線的方程為,

得:

所以.又由,所以

所以拋物線的方程為.

2)四邊形存在外接圓.

設(shè)直線方程為,

代入中,得,則

,

所以,

因?yàn)?/span>,即,所以.

因此,切線的斜率為,切線的斜率為

由于,所以,即是直角三角形,

所以的外接圓的圓心為線段的中點(diǎn),線段是圓的直徑,

所以點(diǎn)一定在的外接圓上,即四邊形存在外接圓.

又因?yàn)?/span>,所以當(dāng)時(shí),線段最短,最短長度為4

此時(shí)圓的面積最小,最小面積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,的中點(diǎn),,平面平面.

(1)求證:平面平面;

(2)記點(diǎn)到平面的距離為,點(diǎn)到平面的距離為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取名工人,將他們隨機(jī)分成兩組,每組.第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:)繪制了如圖所示的莖葉圖(莖為十位數(shù),葉為個(gè)位數(shù)):

1)根據(jù)莖葉圖,估計(jì)兩種生產(chǎn)方式完成任務(wù)所需時(shí)間至少分鐘的概率,并對(duì)比兩種生產(chǎn)方式所求概率,判斷哪種生產(chǎn)方式的效率更高?

2)將完成生產(chǎn)任務(wù)所需時(shí)間超過和不超過的工人數(shù)填入下面的列聯(lián)表:

超過

不超過

第一種生產(chǎn)方式

第二種生產(chǎn)方式

3)根據(jù)(2)中的列聯(lián)表,能否有的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中,若則稱為“數(shù)列”.設(shè)為“數(shù)列”,記的前項(xiàng)和為

1)若,求的值;

2)若,求的值;

3)證明:中總有一項(xiàng)為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇跡之一,其中較為著名的是胡夫金字塔.令人吃驚的并不僅僅是胡夫金字塔的雄壯身姿,還有發(fā)生在胡夫金字塔上的數(shù)字“巧合”.如胡夫金字塔的底部周長如果除以其高度的兩倍,得到的商為3.14159,這就是圓周率較為精確的近似值.金字塔底部形為正方形,整個(gè)塔形為正四棱錐,經(jīng)古代能工巧匠建設(shè)完成后,底座邊長大約230米.因年久風(fēng)化,頂端剝落10米,則胡夫金字塔現(xiàn)高大約為( )

A.128.5米B.132.5米C.136.5米D.110.5米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若曲線處的切線的斜率為2,求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)在區(qū)間上有零點(diǎn),求實(shí)數(shù)的取值范圍.是自然對(duì)數(shù)的底數(shù),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從編號(hào)為1,2,3,4,1010個(gè)大小、形狀相同的小球中,任取5個(gè)球.如果某兩個(gè)球的編號(hào)相鄰,則稱這兩個(gè)球?yàn)橐唤M好球”.

1)求任取的5個(gè)球中至少有一組好球的概率;

2)在任取的5個(gè)球中,記好球的組數(shù)為X,求隨機(jī)變量的概率分布列和均值E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 t為參數(shù)),若以O為極點(diǎn),x軸的正半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

1)求曲線C的直角坐標(biāo)方程及直線l的普通方程;

2)將所得曲線C向右平移1個(gè)單位長度,再將曲線C上的所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>2倍,得到曲線,求曲線上的點(diǎn)到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是菱形,底面,分別是的中點(diǎn),,.

I)證明:;

II)求直線與平面所成角的正弦值;

III)在邊上是否存在點(diǎn),使所成角的余弦值為,若存在,確定點(diǎn)位置;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案