5.設(shè)x,y,z都是正數(shù),則三個數(shù)$x+\frac{1}{y},y+\frac{1}{z},z+\frac{1}{x}$的值說法正確的是③.
①都小于2 ②至少有一個不大于2  ③至少有一個不小于2  ④都大于2.

分析 根據(jù)基本不等式得到x+$\frac{1}{y}$+y+$\frac{1}{z}$+z+$\frac{1}{x}$≥2$\sqrt{x•\frac{1}{x}}$+2$\sqrt{y•\frac{1}{y}}$+2$\sqrt{z•\frac{1}{z}}$=6,問題得以解決.

解答 解:因?yàn)閤,y,z都是正數(shù),
所以x+$\frac{1}{y}$+y+$\frac{1}{z}$+z+$\frac{1}{x}$≥2$\sqrt{x•\frac{1}{x}}$+2$\sqrt{y•\frac{1}{y}}$+2$\sqrt{z•\frac{1}{z}}$=6,當(dāng)且僅當(dāng)x=y=1時取等號,
故$x+\frac{1}{y},y+\frac{1}{z},z+\frac{1}{x}$至少有一個不小于2,
故答案為:③.

點(diǎn)評 本題考查了基本不等式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)a、b、c是正實(shí)數(shù),且a+b+c=3,求$\frac{{a}^{2}+9}{2a+(b+c)^{2}}$+$\frac{^{2}+9}{2^{2}+(a+c)^{2}}$+$\frac{{c}^{2}+9}{2{c}^{2}+(b+a)^{2}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知△ABC中,角A、B、C所對的邊長分別為a、b、c.
(1)若acosC=(2b-c)cosA,求角A的大。
(2)已知3c=2b,且E,F(xiàn)分別是邊AC,AB,的中點(diǎn),若|BE|<t|CF|恒成立,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某處發(fā)生火災(zāi),急需提供A,B,C三種型號的滅火器進(jìn)行救援,其中A,B,C三種型號的產(chǎn)品數(shù)量依次構(gòu)成公比為3的等比數(shù)列,現(xiàn)用分層抽樣的方法抽取一個容量為130的樣本,則應(yīng)從C型號產(chǎn)品中抽取的數(shù)量為90.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知cosα=$\frac{1}{3}$,且-$\frac{π}{2}$<α<0,求$\frac{2cos(π-α)-sin(π+α)}{4cos(-α)+sin(2π-α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知向量$\overrightarrow{a}$=(1,2,3),$\overrightarrow$=(-1,$\frac{1}{2}$,m),且$\overrightarrow{a}$⊥$\overrightarrow$,則m=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)求證:無論m取什么實(shí)數(shù),直線l恒過第一象限;
(2)求直線l被圓C截得的弦長最短時m的值以及最短長度;
(3)設(shè)直線l與圓C相交于A、B兩點(diǎn),求AB中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,三棱錐P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=4,點(diǎn)E、F分別為PC、PA的中點(diǎn).
(1)求證:BE⊥平面PAC;
(2)求三棱錐F-ABE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)p:($\frac{1}{2}$)x>1,q:-2<x<-1,則p是q成立的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案