【題目】如圖,已知多面體的底面是邊長為2的菱形,平面,,且.
(1)證明:平面平面;
(2)若直線與平面所成的角為45°,求平面與平面所成銳二面角的余弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)連接交于點(diǎn),取的中點(diǎn),連接,,由中位線定理,和空間中平行的傳遞性可證四邊形為平行四邊形,即,由已知線面垂直和菱形證得平面,所以平面,再由面面垂直的判定定理得證;
(2)由直線與平面所成的角為45°求得AP,分別以所在直線為軸建立空間直角坐標(biāo)系,有空間坐標(biāo)表示法表示點(diǎn)P,C,E,D,B,進(jìn)而求得平面和平面的法向量,由向量的數(shù)量積求夾角的公式求得,法向量的夾角,觀察已知圖形為銳二面角,作答即可.
(1)證明:如圖,連接交于點(diǎn),取的中點(diǎn),連接,,
∵分別是的中點(diǎn),
∴,且,
∵,且,
∴,且,
∴四邊形為平行四邊形,∴.
∵平面,平面,
∴,
又是菱形,,,
∴平面,∴平面,
又平面,
∴平面平面.
(2)由直線與平面所成的角為45°知,,∴,
∴為等邊三角形.設(shè)的中點(diǎn)為,則.
如圖,分別以所在直線為軸建立空間直角坐標(biāo)系,
則,,,,,
,,,,
設(shè)為平面的法向量,
則即令,可得即.
設(shè)為平面的法向量,
則即令,可得,
所以,
故平面與平面所成銳二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三國時(shí)代吳國數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實(shí)、黃實(shí),利用,化簡,得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的圖像在處的切線方程;
(2)求函數(shù)的極大值;
(3)若對恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。
(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:
(2)若成等比數(shù)列,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出的普通方程及的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)在上,點(diǎn)在上,求的最小值及此時(shí)點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉行運(yùn)動會,其中三級跳遠(yuǎn)的成績在米以上的進(jìn)入決賽,把所得的成績進(jìn)行整理后,分成組畫出頻率分布直方圖的一部分(如圖),已知第組的頻數(shù)是.
(1)求進(jìn)入決賽的人數(shù);
(2)用樣本的頻率代替概率,記表示兩人中進(jìn)入決賽的人數(shù),求得分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉行運(yùn)動會,其中三級跳遠(yuǎn)的成績在米以上的進(jìn)入決賽,把所得的數(shù)據(jù)進(jìn)行整理后,分成組畫出頻率分布直方圖的一部分(如圖),已知第組的頻數(shù)是.
(1)求進(jìn)入決賽的人數(shù);
(2)經(jīng)過多次測試后發(fā)現(xiàn),甲的成績均勻分布在米之間,乙的成績均勻分布在米之間,現(xiàn)甲、乙各跳一次,求甲比乙遠(yuǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某地某月1日至15日的日平均溫度變化的折線圖,根據(jù)該折線圖,下列結(jié)論正確的是( 。
A. 這15天日平均溫度的極差為
B. 連續(xù)三天日平均溫度的方差最大的是7日,8日,9日三天
C. 由折線圖能預(yù)測16日溫度要低于
D. 由折線圖能預(yù)測本月溫度小于的天數(shù)少于溫度大于的天數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若的值域?yàn)?/span>,求的值;
(Ⅱ)巳,是否存在這祥的實(shí)數(shù),使函數(shù)在區(qū)間內(nèi)有且只有一個(gè)零點(diǎn).若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com