【題目】三國時代吳國數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )

A. B. C. D.

【答案】A

【解析】分析:設(shè)三角形的直角邊分別為1,,利用幾何概型得出圖釘落在小正方形內(nèi)的概率即可得出結(jié)論.

解析:設(shè)三角形的直角邊分別為1,,則弦為2,故而大正方形的面積為4,小正方形的面積為.

圖釘落在黃色圖形內(nèi)的概率為.

落在黃色圖形內(nèi)的圖釘數(shù)大約為.

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點,是橢圓上的動點,且面積的最大值為.

1)求橢圓的方程及離心率;

2)若是橢圓的左、右頂點,直線與橢圓在點處的切線交于點,當(dāng)點在橢圓上運動時,求證:以為直徑的圓與直線恒相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系,.以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,點上的動點,的中點.

1)請求出點軌跡的直角坐標(biāo)方程;

2)設(shè)點的極坐標(biāo)為若直線經(jīng)過點且與曲線交于點,弦的中點為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點為,,焦距為,直線:與橢圓相交于,兩點,為弦的中點.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若直線:與橢圓相交于不同的兩點,,,若為坐標(biāo)原點),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入的值分別為5,2,則輸出的值為(

A.64B.68C.72D.133

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學(xué)對這四件參賽作品預(yù)測如下:

甲說:作品獲得一等獎”; 乙說:作品獲得一等獎”;

丙說:兩件作品未獲得一等獎”; 丁說:作品獲得一等獎”.

評獎揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十二生肖是十二地支的形象化代表,即子(鼠)、丑(牛)、寅(虎)、卯(兔)、辰(龍)、巳(蛇)、午(馬)、未(羊)、申(猴)、酉(雞)、戌(狗)、亥(豬),每一個人的出生年份對應(yīng)了十二種動物中的一種,即自己的屬相.現(xiàn)有印著六種不同生肖圖案(包含馬、羊)的毛絨娃娃各一個,小張同學(xué)的屬相為馬,小李同學(xué)的屬相為羊,現(xiàn)在這兩位同學(xué)從這六個毛絨娃娃中各隨機取一個(不放回),則這兩位同學(xué)都拿到自己屬相的毛絨娃娃的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體,平面平面,,,的中點,上的點.

)若平面,證明:的中點;

(Ⅱ)若,,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點,點和點,動點滿足:.

1)求動點的軌跡曲線的方程并說明是何種曲線;

2)若拋物線的焦點恰為曲線的頂點,過點的直線與拋物線交于,兩點,,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案